{"id":"https://openalex.org/W4404986058","doi":"https://doi.org/10.48550/arxiv.2408.05160","title":"Federated Hypergraph Learning: Hyperedge Completion with Local\n Differential Privacy","display_name":"Federated Hypergraph Learning: Hyperedge Completion with Local\n Differential Privacy","publication_year":2024,"publication_date":"2024-08-09","ids":{"openalex":"https://openalex.org/W4404986058","doi":"https://doi.org/10.48550/arxiv.2408.05160"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2408.05160","pdf_url":"http://arxiv.org/pdf/2408.05160","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2408.05160","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5048206908","display_name":"Linfeng Luo","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Luo, Linfeng","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5007662359","display_name":"Fengxiao Tang","orcid":"https://orcid.org/0000-0003-2414-4802"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Tang, Fengxiao","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5040643591","display_name":"Xiyu Liu","orcid":"https://orcid.org/0000-0003-4976-9227"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Liu, Xiyu","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5105517691","display_name":"Z. J. Guo","orcid":"https://orcid.org/0000-0001-8645-1635"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Guo, Zhiqi","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5084615013","display_name":"Z. M. Qiu","orcid":"https://orcid.org/0009-0009-2781-9343"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Qiu, Zihao","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5115594037","display_name":"Ming Zhao","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhao, Ming","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":84},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10764","display_name":"Privacy-Preserving Technologies in Data","score":0.9945,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10764","display_name":"Privacy-Preserving Technologies in Data","score":0.9945,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/differential-privacy","display_name":"Differential Privacy","score":0.82687527},{"id":"https://openalex.org/keywords/hypergraph","display_name":"Hypergraph","score":0.8010725}],"concepts":[{"id":"https://openalex.org/C23130292","wikidata":"https://www.wikidata.org/wiki/Q5275358","display_name":"Differential privacy","level":2,"score":0.82687527},{"id":"https://openalex.org/C2781221856","wikidata":"https://www.wikidata.org/wiki/Q840247","display_name":"Hypergraph","level":2,"score":0.8010725},{"id":"https://openalex.org/C93226319","wikidata":"https://www.wikidata.org/wiki/Q193137","display_name":"Differential (mechanical device)","level":2,"score":0.58251166},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.53476816},{"id":"https://openalex.org/C144133560","wikidata":"https://www.wikidata.org/wiki/Q4830453","display_name":"Business","level":0,"score":0.39166996},{"id":"https://openalex.org/C108827166","wikidata":"https://www.wikidata.org/wiki/Q175975","display_name":"Internet privacy","level":1,"score":0.34587753},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.3443709},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.2585475},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.16959289},{"id":"https://openalex.org/C118615104","wikidata":"https://www.wikidata.org/wiki/Q121416","display_name":"Discrete mathematics","level":1,"score":0.11809385},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.08278301},{"id":"https://openalex.org/C146978453","wikidata":"https://www.wikidata.org/wiki/Q3798668","display_name":"Aerospace engineering","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2408.05160","pdf_url":"http://arxiv.org/pdf/2408.05160","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2408.05160","pdf_url":"http://arxiv.org/pdf/2408.05160","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4376608938","https://openalex.org/W4376608589","https://openalex.org/W4300037846","https://openalex.org/W4288275998","https://openalex.org/W3138003926","https://openalex.org/W2963081352","https://openalex.org/W2472555608","https://openalex.org/W1948107826","https://openalex.org/W1630514295","https://openalex.org/W1537073411"],"abstract_inverted_index":{"As":[0],"the":[1,114,132,148,160,173,191],"volume":[2],"and":[3,13,145,196],"complexity":[4],"increase,":[5],"graph-structured":[6],"data":[7,20],"commonly":[8],"need":[9],"to":[10,87,151],"be":[11,157],"split":[12],"stored":[14],"across":[15,42,95],"distributed":[16,26,122,146],"systems.":[17],"To":[18,112],"enable":[19],"mining":[21,99],"on":[22,101,186],"subgraphs":[23,102,119],"within":[24],"these":[25],"systems,":[27],"federated":[28,65,80,133,203],"graph":[29,53,66,204],"learning":[30,67,82,205],"has":[31],"been":[32],"proposed,":[33],"allowing":[34],"collaborative":[35],"training":[36,134],"of":[37,103,193],"Graph":[38],"Neural":[39],"Networks":[40],"(GNNs)":[41],"clients":[43],"without":[44],"sharing":[45],"raw":[46],"node":[47,175],"features.":[48],"However,":[49],"when":[50],"dealing":[51],"with":[52],"structures":[54],"that":[55,153,172],"involve":[56],"high-order":[57,115],"relationships":[58,107],"between":[59,118],"nodes,":[60],"known":[61],"as":[62],"hypergraphs,":[63],"existing":[64],"methods":[68],"are":[69,108,177],"less":[70],"effective.":[71],"In":[72,136],"this":[73,137,154,181],"study,":[74],"we":[75,124,170],"introduce":[76,125],"FedHGL,":[77],"an":[78],"innovative":[79],"hypergraph":[81,92,105],"algorithm.":[83],"FedHGL":[84],"is":[85,143],"designed":[86],"collaboratively":[88],"train":[89],"a":[90,104,126],"comprehensive":[91],"neural":[93],"network":[94],"multiple":[96],"clients,":[97],"facilitating":[98],"tasks":[100],"where":[106],"not":[109,178],"merely":[110],"pairwise.":[111],"address":[113],"information":[116,155],"loss":[117],"caused":[120],"by":[121,159,163],"storage,":[123],"pre-propagation":[127,138],"hyperedge":[128],"completion":[129],"operation":[130],"before":[131],"process.":[135,183],"step,":[139],"cross-client":[140],"feature":[141],"aggregation":[142,182],"performed":[144],"at":[147],"central":[149],"server":[150],"ensure":[152,171],"can":[156],"utilized":[158],"clients.":[161],"Furthermore,":[162],"incorporating":[164],"local":[165],"differential":[166],"privacy":[167],"(LDP)":[168],"mechanisms,":[169],"original":[174],"features":[176],"disclosed":[179],"during":[180],"Experimental":[184],"results":[185],"seven":[187],"real-world":[188],"datasets":[189],"confirm":[190],"effectiveness":[192],"our":[194],"approach":[195],"demonstrate":[197],"its":[198],"performance":[199],"advantages":[200],"over":[201],"traditional":[202],"methods.":[206]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4404986058","counts_by_year":[],"updated_date":"2024-12-24T01:53:12.146915","created_date":"2024-12-04"}