{"id":"https://openalex.org/W4403445272","doi":"https://doi.org/10.48550/arxiv.2408.03092","title":"Extend Model Merging from Fine-Tuned to Pre-Trained Large Language\n Models via Weight Disentanglement","display_name":"Extend Model Merging from Fine-Tuned to Pre-Trained Large Language\n Models via Weight Disentanglement","publication_year":2024,"publication_date":"2024-08-06","ids":{"openalex":"https://openalex.org/W4403445272","doi":"https://doi.org/10.48550/arxiv.2408.03092"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2408.03092","pdf_url":"http://arxiv.org/pdf/2408.03092","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2408.03092","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5114310487","display_name":"Le Yu","orcid":"https://orcid.org/0009-0006-1015-4662"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yu, Le","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101188063","display_name":"Bowen Yu","orcid":"https://orcid.org/0009-0008-9642-7880"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yu, Bowen","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5092229377","display_name":"Haiyang Yu","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yu, Haiyang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101488344","display_name":"Fei Huang","orcid":"https://orcid.org/0000-0002-3709-5053"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Huang, Fei","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5100644428","display_name":"Yongbin Li","orcid":"https://orcid.org/0009-0008-4504-2163"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Li, Yongbin","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":77},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9691,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9691,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10181","display_name":"Natural Language Processing Techniques","score":0.9344,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C137293760","wikidata":"https://www.wikidata.org/wiki/Q3621696","display_name":"Language model","level":2,"score":0.5848254},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.47557965},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.3753424},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.3694437}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2408.03092","pdf_url":"http://arxiv.org/pdf/2408.03092","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2408.03092","pdf_url":"http://arxiv.org/pdf/2408.03092","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4396701345","https://openalex.org/W4396696052","https://openalex.org/W4391913857","https://openalex.org/W4391375266","https://openalex.org/W3204019825","https://openalex.org/W2748952813","https://openalex.org/W2390279801","https://openalex.org/W2376932109","https://openalex.org/W2358668433","https://openalex.org/W2001405890"],"abstract_inverted_index":{"Merging":[0],"Large":[1],"Language":[2],"Models":[3],"(LLMs)":[4],"aims":[5],"to":[6,98,107,128,143],"amalgamate":[7],"multiple":[8,66,248],"homologous":[9],"LLMs":[10,19,59,78,251],"into":[11,154,224],"one":[12],"with":[13,34,41,60,130,178,181,186],"all":[14],"the":[15,21,51,87,100,113,146,170,219,237],"capabilities.":[16,239],"Ideally,":[17],"any":[18],"sharing":[20],"same":[22],"backbone":[23],"should":[24],"be":[25],"mergeable,":[26],"irrespective":[27],"of":[28,102,115,222,242,260],"whether":[29],"they":[30,126],"are":[31],"Fine-Tuned":[32],"(FT)":[33],"minor":[35],"parameter":[36,43,62,71],"changes":[37],"or":[38,210],"Pre-Trained":[39],"(PT)":[40],"substantial":[42],"shifts.":[44],"However,":[45],"existing":[46,199],"methods":[47,117],"often":[48],"manually":[49],"assign":[50],"model":[52,152,193],"importance,":[53],"rendering":[54],"them":[55],"feasible":[56],"only":[57,211],"for":[58,81],"similar":[61],"alterations,":[63],"such":[64],"as":[65],"FT":[67,75,106,120,176,250],"LLMs.":[68,109,132],"The":[69],"diverse":[70],"changed":[72],"ranges":[73],"between":[74],"and":[76,121,156,159,191,226,252,265],"PT":[77,108,122,131,184],"pose":[79],"challenges":[80],"current":[82,116],"solutions":[83,200],"in":[84,118,230,236],"empirically":[85],"determining":[86],"optimal":[88],"combination.":[89],"In":[90,169,240],"this":[91],"paper,":[92],"we":[93,134,172,245],"make":[94,227],"a":[95,257],"pioneering":[96],"effort":[97],"broaden":[99],"applicability":[101],"merging":[103,119,147,204],"techniques":[104],"from":[105],"We":[110],"initially":[111],"examine":[112],"efficacy":[114],"LLMs,":[123],"discovering":[124],"that":[125,254],"struggle":[127],"deal":[129],"Subsequently,":[133],"introduce":[135],"an":[136],"approach":[137],"based":[138],"on":[139],"WeIght":[140],"DisENtanglement":[141],"(WIDEN)":[142],"effectively":[144],"extend":[145],"scope,":[148],"which":[149],"first":[150],"disentangles":[151],"weights":[153],"magnitude":[155],"direction":[157],"components,":[158],"then":[160],"performs":[161],"adaptive":[162],"fusion":[163],"by":[164],"considering":[165],"their":[166],"respective":[167],"contributions.":[168],"experiments,":[171],"merge":[173,247],"Qwen1.5-Chat":[174,225],"(an":[175],"LLM":[177,185],"instruction-following":[179,213],"skills)":[180],"Sailor":[182,223],"(a":[183],"multilingual":[187,220],"abilities)":[188],"across":[189],"7B":[190],"14B":[192],"scales.":[194],"Results":[195],"reveal":[196],"that:":[197],"(1)":[198],"usually":[201],"fail":[202],"when":[203],"Sailor,":[205],"either":[206],"losing":[207],"both":[208],"abilities":[209,221],"retaining":[212],"skills;":[214],"(2)":[215],"WIDEN":[216,255],"successfully":[217],"injects":[218],"it":[228],"proficient":[229],"Southeast":[231],"Asian":[232],"languages,":[233],"achieving":[234],"enhancements":[235],"fundamental":[238],"light":[241],"previous":[243],"research,":[244],"also":[246],"13B":[249],"observe":[253],"achieves":[256],"balanced":[258],"amalgamation":[259],"instruction":[261],"following,":[262],"mathematical":[263],"reasoning,":[264],"code":[266],"generation":[267],"skills.":[268]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4403445272","counts_by_year":[],"updated_date":"2025-04-22T19:16:32.784384","created_date":"2024-10-16"}