{"id":"https://openalex.org/W4403622505","doi":"https://doi.org/10.48550/arxiv.2408.02085","title":"Unleashing the Power of Data Tsunami: A Comprehensive Survey on Data\n Assessment and Selection for Instruction Tuning of Language Models","display_name":"Unleashing the Power of Data Tsunami: A Comprehensive Survey on Data\n Assessment and Selection for Instruction Tuning of Language Models","publication_year":2024,"publication_date":"2024-08-04","ids":{"openalex":"https://openalex.org/W4403622505","doi":"https://doi.org/10.48550/arxiv.2408.02085"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2408.02085","pdf_url":"http://arxiv.org/pdf/2408.02085","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2408.02085","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5051703382","display_name":"Yulei Qin","orcid":"https://orcid.org/0000-0002-0996-3984"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Qin, Yulei","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5052688308","display_name":"Yuncheng Yang","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yang, Yuncheng","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5056265693","display_name":"Pengcheng Guo","orcid":"https://orcid.org/0000-0002-1249-2300"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Guo, Pengcheng","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5084101413","display_name":"Gang Li","orcid":"https://orcid.org/0000-0002-4195-6899"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Li, Gang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100784394","display_name":"Hang Shao","orcid":"https://orcid.org/0009-0008-9619-5506"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Shao, Hang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101935762","display_name":"Yuchen Shi","orcid":"https://orcid.org/0000-0002-1885-8043"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Shi, Yuchen","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101623269","display_name":"Zihan Xu","orcid":"https://orcid.org/0000-0001-5499-4803"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Xu, Zihan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5061924699","display_name":"Yun Gu","orcid":"https://orcid.org/0000-0002-4199-0675"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Gu, Yun","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5080163144","display_name":"Ke Li","orcid":"https://orcid.org/0000-0002-1314-7293"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Li, Ke","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5111153775","display_name":"Xing Sun","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Sun, Xing","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":77},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10181","display_name":"Natural Language Processing Techniques","score":0.9153,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10181","display_name":"Natural Language Processing Techniques","score":0.9153,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C81917197","wikidata":"https://www.wikidata.org/wiki/Q628760","display_name":"Selection (genetic algorithm)","level":2,"score":0.7702421},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5831586},{"id":"https://openalex.org/C163258240","wikidata":"https://www.wikidata.org/wiki/Q25342","display_name":"Power (physics)","level":2,"score":0.46629113},{"id":"https://openalex.org/C2522767166","wikidata":"https://www.wikidata.org/wiki/Q2374463","display_name":"Data science","level":1,"score":0.38593072},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.2155439},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.055416137},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2408.02085","pdf_url":"http://arxiv.org/pdf/2408.02085","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2408.02085","pdf_url":"http://arxiv.org/pdf/2408.02085","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4396701345","https://openalex.org/W4396696052","https://openalex.org/W4391913857","https://openalex.org/W4391375266","https://openalex.org/W2899084033","https://openalex.org/W2748952813","https://openalex.org/W2390279801","https://openalex.org/W2376932109","https://openalex.org/W2358668433","https://openalex.org/W2001405890"],"abstract_inverted_index":{"Instruction":[0],"tuning":[1,116],"plays":[2],"a":[3,25,72,102,132],"critical":[4],"role":[5],"in":[6,51,74],"aligning":[7],"large":[8],"language":[9,56],"models":[10],"(LLMs)":[11],"with":[12],"human":[13],"preference.":[14],"Despite":[15],"the":[16,39,52,64,93,147,175,180],"vast":[17],"amount":[18],"of":[19,54,66,79,108,117,149],"open":[20,176],"instruction":[21,67,115],"datasets,":[22],"naively":[23],"training":[24],"LLM":[26],"on":[27,76,105,160,169],"all":[28,122],"existing":[29,106],"instructions":[30],"may":[31],"not":[32],"be":[33,84,90],"optimal":[34],"and":[35,45,59,86,111,128,178],"practical.":[36],"To":[37,96],"pinpoint":[38],"most":[40],"beneficial":[41],"datapoints,":[42],"data":[43,80,109],"assessment":[44,110],"selection":[46,94,112],"methods":[47,124,142,157],"have":[48],"been":[49],"proposed":[50],"fields":[53],"natural":[55],"processing":[57],"(NLP)":[58],"deep":[60],"learning.":[61],"However,":[62],"under":[63],"context":[65],"tuning,":[68],"there":[69],"still":[70],"exists":[71],"gap":[73],"knowledge":[75],"what":[77],"kind":[78],"evaluation":[81],"metrics":[82],"can":[83,89],"employed":[85],"how":[87],"they":[88],"integrated":[91],"into":[92,125],"mechanism.":[95],"bridge":[97],"this":[98],"gap,":[99],"we":[100,173],"present":[101],"comprehensive":[103],"review":[104],"literature":[107],"especially":[113],"for":[114,183],"LLMs.":[118],"We":[119],"systematically":[120],"categorize":[121],"applicable":[123],"quality-based,":[126],"diversity-based,":[127],"importance-based":[129],"ones":[130],"where":[131],"unified,":[133],"fine-grained":[134],"taxonomy":[135],"is":[136,158],"structured.":[137],"For":[138],"each":[139],"category,":[140],"representative":[141],"are":[143,189],"elaborated":[144],"to":[145,165],"describe":[146],"landscape":[148],"relevant":[150],"research.":[151],"In":[152],"addition,":[153],"comparison":[154],"between":[155],"latest":[156],"conducted":[159],"their":[161,170],"officially":[162],"reported":[163],"results":[164],"provide":[166],"in-depth":[167],"discussions":[168],"limitations.":[171],"Finally,":[172],"summarize":[174],"challenges":[177],"propose":[179],"promosing":[181],"avenues":[182],"future":[184],"studies.":[185],"All":[186],"related":[187],"contents":[188],"available":[190],"at":[191],"https://github.com/yuleiqin/fantastic-data-engineering.":[192]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4403622505","counts_by_year":[],"updated_date":"2025-04-22T07:24:33.482804","created_date":"2024-10-22"}