{"id":"https://openalex.org/W4402733601","doi":"https://doi.org/10.48550/arxiv.2407.21787","title":"Large Language Monkeys: Scaling Inference Compute with Repeated Sampling","display_name":"Large Language Monkeys: Scaling Inference Compute with Repeated Sampling","publication_year":2024,"publication_date":"2024-07-31","ids":{"openalex":"https://openalex.org/W4402733601","doi":"https://doi.org/10.48550/arxiv.2407.21787"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2407.21787","pdf_url":"http://arxiv.org/pdf/2407.21787","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2407.21787","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5109681665","display_name":"Bradley Brown","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Brown, Bradley","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5042028062","display_name":"Jordan Juravsky","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Juravsky, Jordan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5093895433","display_name":"Ryan Ehrlich","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ehrlich, Ryan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5054998594","display_name":"Ronald Clark","orcid":"https://orcid.org/0000-0002-6344-5299"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Clark, Ronald","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5088551093","display_name":"Quoc V. Le","orcid":"https://orcid.org/0000-0002-1087-2844"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Le, Quoc V.","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5103852640","display_name":"Christopher R\u00e9","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"R\u00e9, Christopher","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5070731184","display_name":"Azalia Mirhoseini","orcid":"https://orcid.org/0000-0002-2440-0944"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Mirhoseini, Azalia","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.901841,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":77,"max":88},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.9605,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.9605,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12072","display_name":"Machine Learning and Algorithms","score":0.9407,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10181","display_name":"Natural Language Processing Techniques","score":0.9304,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.7359077},{"id":"https://openalex.org/C99844830","wikidata":"https://www.wikidata.org/wiki/Q102441924","display_name":"Scaling","level":2,"score":0.6343832},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.50937974},{"id":"https://openalex.org/C140779682","wikidata":"https://www.wikidata.org/wiki/Q210868","display_name":"Sampling (signal processing)","level":3,"score":0.5065366},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.3372451},{"id":"https://openalex.org/C149782125","wikidata":"https://www.wikidata.org/wiki/Q160039","display_name":"Econometrics","level":1,"score":0.33338028},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.29045016},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.27375412},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.065313995},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.058777362},{"id":"https://openalex.org/C106131492","wikidata":"https://www.wikidata.org/wiki/Q3072260","display_name":"Filter (signal processing)","level":2,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2407.21787","pdf_url":"http://arxiv.org/pdf/2407.21787","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2407.21787","pdf_url":"http://arxiv.org/pdf/2407.21787","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4385571583","https://openalex.org/W4378770497","https://openalex.org/W4308245303","https://openalex.org/W3107697994","https://openalex.org/W2910573937","https://openalex.org/W2079781215","https://openalex.org/W2055243143","https://openalex.org/W2049584446","https://openalex.org/W2014033564","https://openalex.org/W141820298"],"abstract_inverted_index":{"Scaling":[0],"the":[1,24,46,61,72,112,131,148,176,181,198,276],"amount":[2,25],"of":[3,26,48,63,74,79,114,134,183,200,212],"compute":[4,27,38],"used":[5],"to":[6,19,28,109,125,241,250,272],"train":[7],"language":[8],"models":[9,239],"has":[10],"dramatically":[11],"improved":[12,102],"their":[13],"capabilities.":[14],"However,":[15,247],"when":[16],"it":[17],"comes":[18],"inference,":[20],"we":[21,35,56,105,205],"often":[22,186],"limit":[23],"only":[29],"one":[30,123,167],"attempt":[31,68],"per":[32],"problem.":[33],"Here,":[34],"explore":[36],"inference":[37],"as":[39,259],"another":[40],"axis":[41],"for":[42,166,219],"scaling":[43,202],"by":[44,66],"increasing":[45],"number":[47,73,182],"generated":[49],"samples.":[50,246],"Across":[51],"multiple":[52],"tasks":[53],"and":[54,85,158,180,188,234,270],"models,":[55,264],"observe":[57],"that":[58,207],"coverage":[59,98,179,236],"-":[60,69],"fraction":[62,113],"problems":[64,231],"solved":[65,116],"any":[67],"scales":[70],"with":[71,117,122,127,152,192,237,244,275],"samples":[75,154,184,210,269],"over":[76,242],"four":[77],"orders":[78],"magnitude.":[80],"In":[81],"domains":[82,223],"like":[83],"coding":[84],"formal":[86],"proofs,":[87],"where":[88],"all":[89],"answers":[90],"can":[91,189],"be":[92,190],"automatically":[93],"verified,":[94],"these":[95],"increases":[96,119],"in":[97,222],"directly":[99],"translate":[100],"into":[101],"performance.":[103],"When":[104,227],"apply":[106],"repeated":[107],"sampling":[108],"SWE-bench":[110],"Lite,":[111],"issues":[115,161],"DeepSeek-V2-Coder-Instruct":[118],"from":[120,169,232,254],"15.9%":[121],"sample":[124,168,256,277],"56%":[126],"250":[128],"samples,":[129],"outperforming":[130],"single-attempt":[132],"state-of-the-art":[133],"43%":[135],"which":[136],"uses":[137],"more":[138,156,160],"capable":[139],"frontier":[140],"models.":[141],"Moreover,":[142],"using":[143],"current":[144],"API":[145],"pricing,":[146],"amplifying":[147],"cheaper":[149],"DeepSeek":[150],"model":[151],"five":[153],"is":[155,185],"cost-effective":[157],"solves":[159],"than":[162],"paying":[163],"a":[164,255],"premium":[165],"GPT-4o":[170],"or":[171,262],"Claude":[172],"3.5":[173],"Sonnet.":[174],"Interestingly,":[175],"relationship":[177],"between":[178],"log-linear":[187],"modelled":[191],"an":[193,216],"exponentiated":[194],"power":[195],"law,":[196],"suggesting":[197],"existence":[199],"inference-time":[201],"laws.":[203],"Finally,":[204],"find":[206],"identifying":[208],"correct":[209,252],"out":[211],"many":[213],"generations":[214],"remains":[215],"important":[217],"direction":[218],"future":[220],"research":[221],"without":[224],"automatic":[225],"verifiers.":[226],"solving":[228],"math":[229],"word":[230],"GSM8K":[233],"MATH,":[235],"Llama-3":[238],"grows":[240],"95%":[243],"10,000":[245],"common":[248],"methods":[249],"pick":[251],"solutions":[253],"collection,":[257],"such":[258],"majority":[260],"voting":[261],"reward":[263],"plateau":[265],"beyond":[266],"several":[267],"hundred":[268],"fail":[271],"fully":[273],"scale":[274],"budget.":[278]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4402733601","counts_by_year":[{"year":2024,"cited_by_count":1}],"updated_date":"2025-04-23T17:26:54.937298","created_date":"2024-09-24"}