{"id":"https://openalex.org/W4401202091","doi":"https://doi.org/10.48550/arxiv.2407.19821","title":"Distilling High Diagnostic Value Patches for Whole Slide Image\n Classification Using Attention Mechanism","display_name":"Distilling High Diagnostic Value Patches for Whole Slide Image\n Classification Using Attention Mechanism","publication_year":2024,"publication_date":"2024-07-29","ids":{"openalex":"https://openalex.org/W4401202091","doi":"https://doi.org/10.48550/arxiv.2407.19821"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2407.19821","pdf_url":"http://arxiv.org/pdf/2407.19821","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2407.19821","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5022249310","display_name":"Tianhang Nan","orcid":"https://orcid.org/0009-0002-2202-6503"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Nan, Tianhang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5102443399","display_name":"Hao Quan","orcid":"https://orcid.org/0009-0009-3311-5553"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Quan, Hao","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100686691","display_name":"Yong Ding","orcid":"https://orcid.org/0000-0002-5226-7511"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ding, Yong","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100328581","display_name":"Xingyu Li","orcid":"https://orcid.org/0000-0002-3494-2552"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Li, Xingyu","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100420874","display_name":"Kai Yang","orcid":"https://orcid.org/0000-0002-6540-7480"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yang, Kai","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5056282612","display_name":"Xiaoyu Cui","orcid":"https://orcid.org/0000-0002-0585-9813"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Cui, Xiaoyu","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":84},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12702","display_name":"Brain Tumor Detection and Classification","score":0.4087,"subfield":{"id":"https://openalex.org/subfields/2808","display_name":"Neurology"},"field":{"id":"https://openalex.org/fields/28","display_name":"Neuroscience"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},"topics":[{"id":"https://openalex.org/T12702","display_name":"Brain Tumor Detection and Classification","score":0.4087,"subfield":{"id":"https://openalex.org/subfields/2808","display_name":"Neurology"},"field":{"id":"https://openalex.org/fields/28","display_name":"Neuroscience"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},{"id":"https://openalex.org/T12874","display_name":"Digital Imaging for Blood Diseases","score":0.3659,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11775","display_name":"COVID-19 diagnosis using AI","score":0.3357,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/feature-extraction","display_name":"Feature Extraction","score":0.574694},{"id":"https://openalex.org/keywords/value","display_name":"Value (mathematics)","score":0.5691154},{"id":"https://openalex.org/keywords/image-segmentation","display_name":"Image Segmentation","score":0.548417},{"id":"https://openalex.org/keywords/medical-image-analysis","display_name":"Medical Image Analysis","score":0.533292},{"id":"https://openalex.org/keywords/pneumonia-detection","display_name":"Pneumonia Detection","score":0.531804},{"id":"https://openalex.org/keywords/automated-diagnosis","display_name":"Automated Diagnosis","score":0.530551}],"concepts":[{"id":"https://openalex.org/C89611455","wikidata":"https://www.wikidata.org/wiki/Q6804646","display_name":"Mechanism (biology)","level":2,"score":0.68186474},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.5839116},{"id":"https://openalex.org/C2776291640","wikidata":"https://www.wikidata.org/wiki/Q2912517","display_name":"Value (mathematics)","level":2,"score":0.5691154},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.53959787},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5191697},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.40800217},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.40693587},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.2007108},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.11707434},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2407.19821","pdf_url":"http://arxiv.org/pdf/2407.19821","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2407.19821","pdf_url":"http://arxiv.org/pdf/2407.19821","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W2390968135","https://openalex.org/W2388563748","https://openalex.org/W2382997850","https://openalex.org/W2382213751","https://openalex.org/W2375179084","https://openalex.org/W2370906336","https://openalex.org/W2366646518","https://openalex.org/W2354715126","https://openalex.org/W2351750670","https://openalex.org/W1597848696"],"abstract_inverted_index":{"Multiple":[0],"Instance":[1],"Learning":[2],"(MIL)":[3],"has":[4,34,175],"garnered":[5],"widespread":[6],"attention":[7,125],"in":[8,109],"the":[9,51,63,100,122,137,156,177,190,193,207,225,230],"field":[10],"of":[11,50,59,65,102,124,140],"Whole":[12],"Slide":[13],"Image":[14],"(WSI)":[15],"classification":[16],"as":[17,26,53,105,134],"it":[18],"replaces":[19],"pixel-level":[20],"manual":[21],"annotation":[22],"with":[23,75,130],"diagnostic":[24,77,132],"reports":[25],"labels,":[27],"significantly":[28],"reducing":[29],"labor":[30],"costs.":[31],"Recent":[32],"research":[33],"shown":[35],"that":[36],"bag-level":[37],"MIL":[38,166],"methods":[39,61,221],"often":[40],"yield":[41],"better":[42],"results":[43],"because":[44],"they":[45],"can":[46],"consider":[47],"all":[48,145],"patches":[49,74,82,104],"WSI":[52],"a":[54,57,106],"whole.":[55],"However,":[56],"drawback":[58],"such":[60],"is":[62,161],"incorporation":[64],"more":[66],"redundant":[67,103],"patches,":[68],"leading":[69,168],"to":[70,83,127,136,153,163,169,229],"interference.":[71],"To":[72],"extract":[73],"high":[76,131],"value":[78],"while":[79,200],"excluding":[80],"interfering":[81],"address":[84],"this":[85],"issue,":[86],"we":[87,148],"developed":[88],"an":[89],"attention-based":[90],"feature":[91,157,219],"distillation":[92,158,220],"multi-instance":[93],"learning":[94],"(AFD-MIL)":[95],"approach.":[96],"This":[97,173],"approach":[98,174],"proposed":[99],"exclusion":[101],"preprocessing":[107],"operation":[108],"weakly":[110],"supervised":[111],"learning,":[112],"directly":[113],"mitigating":[114],"interference":[115],"from":[116],"extensive":[117],"noise.":[118],"It":[119],"also":[120],"pioneers":[121],"use":[123],"mechanisms":[126],"distill":[128],"features":[129],"value,":[133],"opposed":[135],"traditional":[138],"practice":[139],"indiscriminately":[141],"and":[142,185,203,236],"forcibly":[143],"integrating":[144],"patches.":[146],"Additionally,":[147],"introduced":[149],"global":[150],"loss":[151],"optimization":[152],"finely":[154],"control":[155],"module.":[159],"AFD-MIL":[160],"orthogonal":[162],"many":[164],"existing":[165],"methods,":[167],"consistent":[170],"performance":[171,235],"improvements.":[172],"surpassed":[176],"current":[178],"state-of-the-art":[179],"method,":[180],"achieving":[181],"91.47%":[182],"ACC":[183,202],"(accuracy)":[184],"94.29%":[186],"AUC":[187,205],"(area":[188],"under":[189],"curve)":[191],"on":[192,206],"Camelyon16":[194],"(Camelyon":[195],"Challenge":[196],"2016,":[197],"breast":[198],"cancer),":[199],"93.33%":[201],"98.17%":[204],"TCGA-NSCLC":[208],"(The":[209],"Cancer":[210],"Genome":[211],"Atlas":[212],"Program:":[213],"non-small":[214],"cell":[215],"lung":[216],"cancer).":[217],"Different":[218],"were":[222],"used":[223],"for":[224],"two":[226],"datasets,":[227],"tailored":[228],"specific":[231],"diseases,":[232],"thereby":[233],"improving":[234],"interpretability.":[237]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4401202091","counts_by_year":[],"updated_date":"2024-12-05T01:15:20.655440","created_date":"2024-08-01"}