{"id":"https://openalex.org/W4402963270","doi":"https://doi.org/10.48550/arxiv.2407.18555","title":"How To Segment in 3D Using 2D Models: Automated 3D Segmentation of\n Prostate Cancer Metastatic Lesions on PET Volumes Using Multi-Angle Maximum\n Intensity Projections and Diffusion Models","display_name":"How To Segment in 3D Using 2D Models: Automated 3D Segmentation of\n Prostate Cancer Metastatic Lesions on PET Volumes Using Multi-Angle Maximum\n Intensity Projections and Diffusion Models","publication_year":2024,"publication_date":"2024-07-26","ids":{"openalex":"https://openalex.org/W4402963270","doi":"https://doi.org/10.48550/arxiv.2407.18555"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2407.18555","pdf_url":"http://arxiv.org/pdf/2407.18555","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2407.18555","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5074313429","display_name":"Amirhosein Toosi","orcid":"https://orcid.org/0000-0001-6432-9428"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Toosi, Amirhosein","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5060184273","display_name":"Sara Harsini","orcid":"https://orcid.org/0000-0001-6196-6982"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Harsini, Sara","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5040772609","display_name":"Fran\u00e7ois B\u00e9nard","orcid":"https://orcid.org/0000-0001-7995-3581"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"B\u00e9nard, Fran\u00e7ois","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5077969822","display_name":"Carlos Uribe","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Uribe, Carlos","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5021438906","display_name":"Arman Rahmim","orcid":"https://orcid.org/0000-0002-9980-2403"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Rahmim, Arman","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":83},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12422","display_name":"Radiomics and Machine Learning in Medical Imaging","score":0.9973,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},"topics":[{"id":"https://openalex.org/T12422","display_name":"Radiomics and Machine Learning in Medical Imaging","score":0.9973,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T10522","display_name":"Medical Imaging Techniques and Applications","score":0.9951,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T10052","display_name":"Medical Image Segmentation Techniques","score":0.982,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/intensity","display_name":"Intensity","score":0.6199019},{"id":"https://openalex.org/keywords/3d-model","display_name":"3d model","score":0.43086773}],"concepts":[{"id":"https://openalex.org/C2780192828","wikidata":"https://www.wikidata.org/wiki/Q181257","display_name":"Prostate cancer","level":3,"score":0.85540533},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.71092904},{"id":"https://openalex.org/C93038891","wikidata":"https://www.wikidata.org/wiki/Q1061524","display_name":"Intensity (physics)","level":2,"score":0.6199019},{"id":"https://openalex.org/C69357855","wikidata":"https://www.wikidata.org/wiki/Q163214","display_name":"Diffusion","level":2,"score":0.4741216},{"id":"https://openalex.org/C3019007443","wikidata":"https://www.wikidata.org/wiki/Q568742","display_name":"3d model","level":2,"score":0.43086773},{"id":"https://openalex.org/C2776235491","wikidata":"https://www.wikidata.org/wiki/Q9625","display_name":"Prostate","level":3,"score":0.417611},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.3998611},{"id":"https://openalex.org/C2989005","wikidata":"https://www.wikidata.org/wiki/Q214963","display_name":"Nuclear medicine","level":1,"score":0.35348207},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.3344366},{"id":"https://openalex.org/C136229726","wikidata":"https://www.wikidata.org/wiki/Q327092","display_name":"Biomedical engineering","level":1,"score":0.32682386},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.32198778},{"id":"https://openalex.org/C121608353","wikidata":"https://www.wikidata.org/wiki/Q12078","display_name":"Cancer","level":2,"score":0.29394612},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.24366862},{"id":"https://openalex.org/C120665830","wikidata":"https://www.wikidata.org/wiki/Q14620","display_name":"Optics","level":1,"score":0.16331536},{"id":"https://openalex.org/C126322002","wikidata":"https://www.wikidata.org/wiki/Q11180","display_name":"Internal medicine","level":1,"score":0.12750584},{"id":"https://openalex.org/C97355855","wikidata":"https://www.wikidata.org/wiki/Q11473","display_name":"Thermodynamics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2407.18555","pdf_url":"http://arxiv.org/pdf/2407.18555","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2407.18555","pdf_url":"http://arxiv.org/pdf/2407.18555","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4281885123","https://openalex.org/W3015759778","https://openalex.org/W299695548","https://openalex.org/W2384122898","https://openalex.org/W2376423713","https://openalex.org/W2345040638","https://openalex.org/W2088520467","https://openalex.org/W2075763133","https://openalex.org/W1583600832","https://openalex.org/W151774199"],"abstract_inverted_index":{"Prostate":[0],"specific":[1],"membrane":[2],"antigen":[3],"(PSMA)":[4],"positron":[5],"emission":[6],"tomography/computed":[7],"tomography":[8],"(PET/CT)":[9],"imaging":[10],"provides":[11],"a":[12,49,149],"tremendously":[13],"exciting":[14],"frontier":[15],"in":[16,58,128,134,157],"visualization":[17],"of":[18,27,43,55,72,92,112,130,154],"prostate":[19],"cancer":[20],"(PCa)":[21],"metastatic":[22,28,56,139,155],"lesions.":[23,45,141],"However,":[24],"accurate":[25],"segmentation":[26,54,102,126],"lesions":[29,57,84],"is":[30],"challenging":[31],"due":[32],"to":[33,123],"low":[34],"signal-to-noise":[35],"ratios":[36],"and":[37,41,132,136],"variable":[38],"sizes,":[39],"shapes,":[40],"locations":[42],"the":[44,79,83,93,99],"This":[46],"study":[47],"proposes":[48],"novel":[50],"approach":[51,81],"for":[52,151],"automated":[53],"PSMA":[59,94],"PET/CT":[60],"3D":[61,77,101,105,125],"volumetric":[62],"images":[63],"using":[64],"2D":[65,73,113],"denoising":[66],"diffusion":[67],"probabilistic":[68],"models":[69],"(DDPMs).":[70],"Instead":[71],"trans-axial":[74],"slices":[75],"or":[76],"volumes,":[78],"proposed":[80,117,143],"segments":[82],"on":[85],"generated":[86],"multi-angle":[87],"maximum":[88],"intensity":[89],"projections":[90],"(MA-MIPs)":[91],"PET":[95],"images,":[96],"then":[97],"obtains":[98],"final":[100],"masks":[103],"from":[104],"ordered":[106],"subset":[107],"expectation":[108],"maximization":[109],"(OSEM)":[110],"reconstruction":[111],"MA-MIPs":[114],"segmentations.":[115],"Our":[116],"method":[118,144],"achieved":[119],"superior":[120],"performance":[121],"compared":[122],"state-of-the-art":[124],"approaches":[127],"terms":[129],"accuracy":[131],"robustness":[133],"detecting":[135],"segmenting":[137],"small":[138],"PCa":[140,158],"The":[142],"has":[145],"significant":[146],"potential":[147],"as":[148],"tool":[150],"quantitative":[152],"analysis":[153],"burden":[156],"patients.":[159]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4402963270","counts_by_year":[],"updated_date":"2025-01-17T22:32:22.640688","created_date":"2024-09-30"}