{"id":"https://openalex.org/W4401300030","doi":"https://doi.org/10.48550/arxiv.2407.11356","title":"The Devil is in the Statistics: Mitigating and Exploiting Statistics\n Difference for Generalizable Semi-supervised Medical Image Segmentation","display_name":"The Devil is in the Statistics: Mitigating and Exploiting Statistics\n Difference for Generalizable Semi-supervised Medical Image Segmentation","publication_year":2024,"publication_date":"2024-07-15","ids":{"openalex":"https://openalex.org/W4401300030","doi":"https://doi.org/10.48550/arxiv.2407.11356"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2407.11356","pdf_url":"http://arxiv.org/pdf/2407.11356","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2407.11356","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5113319623","display_name":"Muyang Qiu","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Qiu, Muyang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100409970","display_name":"Jian Zhang","orcid":"https://orcid.org/0000-0002-5163-5458"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhang, Jian","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100667507","display_name":"Qi Lei","orcid":"https://orcid.org/0000-0001-7517-5313"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Qi, Lei","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100337764","display_name":"Qian Yu","orcid":"https://orcid.org/0000-0002-1615-5555"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yu, Qian","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5055917015","display_name":"Yinghuan Shi","orcid":"https://orcid.org/0000-0003-4534-7318"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Shi, Yinghuan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5101489328","display_name":"Yang Gao","orcid":"https://orcid.org/0000-0002-3568-222X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Gao, Yang","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":77},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10052","display_name":"Medical Image Segmentation Techniques","score":0.9697,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10052","display_name":"Medical Image Segmentation Techniques","score":0.9697,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10862","display_name":"AI in cancer detection","score":0.957,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12535","display_name":"Machine Learning and Data Classification","score":0.94,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/medical-statistics","display_name":"Medical statistics","score":0.4650622}],"concepts":[{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.59930146},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.56613165},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.48015374},{"id":"https://openalex.org/C144548020","wikidata":"https://www.wikidata.org/wiki/Q1252929","display_name":"Medical statistics","level":2,"score":0.4650622},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.40727976},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.27449873}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2407.11356","pdf_url":"http://arxiv.org/pdf/2407.11356","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2407.11356","pdf_url":"http://arxiv.org/pdf/2407.11356","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4396701345","https://openalex.org/W4396696052","https://openalex.org/W4391375266","https://openalex.org/W4249178242","https://openalex.org/W3023596575","https://openalex.org/W2748952813","https://openalex.org/W2390279801","https://openalex.org/W2376932109","https://openalex.org/W2358668433","https://openalex.org/W2001405890"],"abstract_inverted_index":{"Despite":[0],"the":[1,104,159,170],"recent":[2,177],"success":[3],"of":[4,106,172],"domain":[5,22,64,93,107],"generalization":[6,23,56],"in":[7],"medical":[8,46,67,166],"image":[9,142,167],"segmentation,":[10],"voxel-wise":[11],"annotation":[12],"for":[13,109,117],"all":[14],"source":[15],"domains":[16,125],"remains":[17],"a":[18,136,145],"huge":[19],"burden.":[20],"Semi-supervised":[21],"has":[24],"been":[25],"proposed":[26],"very":[27],"recently":[28],"to":[29,79,90,102,122,157],"combat":[30],"this":[31,59,85,131],"challenge":[32],"by":[33],"leveraging":[34],"limited":[35],"labeled":[36],"data":[37,42,53],"along":[38],"with":[39,126,138,176],"abundant":[40],"unlabeled":[41,52],"collected":[43],"from":[44,132],"multiple":[45,99],"institutions,":[47],"depending":[48],"on":[49,164],"precisely":[50],"harnessing":[51],"while":[54],"improving":[55],"simultaneously.":[57],"In":[58],"work,":[60],"we":[61,96,129],"observe":[62],"that":[63],"shifts":[65,108],"between":[66],"institutions":[68],"cause":[69],"disparate":[70],"feature":[71,119,152],"statistics,":[72],"which":[73],"significantly":[74],"deteriorates":[75],"pseudo-label":[76],"quality":[77],"due":[78],"an":[80],"unexpected":[81],"normalization":[82,148],"process.":[83],"Nevertheless,":[84],"phenomenon":[86],"could":[87],"be":[88],"exploited":[89],"facilitate":[91],"unseen":[92,124],"generalization.":[94],"Therefore,":[95],"propose":[97],"1)":[98],"statistics-individual":[100],"branches":[101],"mitigate":[103],"impact":[105],"reliable":[110],"pseudo-labels":[111],"and":[112,144],"2)":[113],"one":[114],"statistics-aggregated":[115],"branch":[116],"domain-invariant":[118],"learning.":[120],"Furthermore,":[121],"simulate":[123],"statistics":[127,156],"difference,":[128],"approach":[130],"two":[133],"aspects,":[134],"i.e.,":[135],"perturbation":[137],"histogram":[139],"matching":[140],"at":[141,151,184],"level":[143],"random":[146],"batch":[147],"selection":[149],"strategy":[150],"level,":[153],"producing":[154],"diverse":[155],"expand":[158],"training":[160],"distribution.":[161],"Evaluation":[162],"results":[163],"three":[165],"datasets":[168],"demonstrate":[169],"effectiveness":[171],"our":[173],"method":[174],"compared":[175],"SOTA":[178],"methods.":[179],"The":[180],"code":[181],"is":[182],"available":[183],"https://github.com/qiumuyang/SIAB.":[185]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4401300030","counts_by_year":[],"updated_date":"2025-04-23T17:49:02.892818","created_date":"2024-08-04"}