{"id":"https://openalex.org/W4403753363","doi":"https://doi.org/10.48550/arxiv.2407.11102","title":"Enhancing Electrocardiogram Signal Analysis Using NLP-Inspired\n Techniques: A Novel Approach with Embedding and Self-Attention","display_name":"Enhancing Electrocardiogram Signal Analysis Using NLP-Inspired\n Techniques: A Novel Approach with Embedding and Self-Attention","publication_year":2024,"publication_date":"2024-07-15","ids":{"openalex":"https://openalex.org/W4403753363","doi":"https://doi.org/10.48550/arxiv.2407.11102"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2407.11102","pdf_url":"http://arxiv.org/pdf/2407.11102","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2407.11102","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5028889445","display_name":"Prapti Ganguly","orcid":"https://orcid.org/0009-0006-7861-8785"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ganguly, Prapti","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5071155612","display_name":"Wazib Ansar","orcid":"https://orcid.org/0000-0001-9191-1771"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ansar, Wazib","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5043543748","display_name":"Amlan Chakrabarti","orcid":"https://orcid.org/0000-0003-4380-3172"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Chakrabarti, Amlan","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":78},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11021","display_name":"ECG Monitoring and Analysis","score":0.9027,"subfield":{"id":"https://openalex.org/subfields/2705","display_name":"Cardiology and Cardiovascular Medicine"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},"topics":[{"id":"https://openalex.org/T11021","display_name":"ECG Monitoring and Analysis","score":0.9027,"subfield":{"id":"https://openalex.org/subfields/2705","display_name":"Cardiology and Cardiovascular Medicine"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/signal","display_name":"SIGNAL (programming language)","score":0.5393455}],"concepts":[{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6183657},{"id":"https://openalex.org/C41608201","wikidata":"https://www.wikidata.org/wiki/Q980509","display_name":"Embedding","level":2,"score":0.60603225},{"id":"https://openalex.org/C2779843651","wikidata":"https://www.wikidata.org/wiki/Q7390335","display_name":"SIGNAL (programming language)","level":2,"score":0.5393455},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.4940353},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.46589243},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.40540692},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.3555249},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2407.11102","pdf_url":"http://arxiv.org/pdf/2407.11102","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2407.11102","pdf_url":"http://arxiv.org/pdf/2407.11102","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4388890789","https://openalex.org/W3006008237","https://openalex.org/W2963903416","https://openalex.org/W2849310602","https://openalex.org/W2419146053","https://openalex.org/W2345479200","https://openalex.org/W2183306018","https://openalex.org/W2088247287","https://openalex.org/W2081900870","https://openalex.org/W2037549926"],"abstract_inverted_index":{"A":[0],"language":[1,100],"is":[2,14,24,103,115,224],"made":[3],"up":[4],"of":[5,9,16,19,43,66,70,83,86,156,174,246,252,269],"an":[6,164],"infinite/finite":[7],"number":[8,18],"sentences,":[10],"which":[11,223],"in":[12,75,91,237,240,284],"turn":[13],"composed":[15],"a":[17,47,58,68,76,84,92,135,257],"words.":[20],"The":[21,182,215],"Electrocardiogram":[22],"(ECG)":[23],"the":[25,44,54,60,125,148,153,157,162,171,175,190,197,204,209,220,233,244,262,266,267,270],"most":[26],"popular":[27],"noninvasive":[28],"medical":[29],"tool":[30],"for":[31,260,282],"studying":[32],"heart":[33],"function":[34],"and":[35,53,109,143,178,184,207],"diagnosing":[36],"various":[37],"irregular":[38],"cardiac":[39],"rhythms.":[40],"Intuitive":[41],"inspection":[42],"ECG":[45,51,61,137,158,176],"reveals":[46],"marked":[48],"similarity":[49],"between":[50],"signals":[52],"spoken":[55,77],"language.":[56],"As":[57],"result,":[59],"signal":[62,177,210],"may":[63],"be":[64],"thought":[65],"as":[67,98,150,152,193,211],"series":[69],"heartbeats":[71],"(similar":[72,88],"to":[73,89,105,117,121,146,169,189,230,242,277],"sentences":[74],"language),":[78],"with":[79,94,256],"each":[80],"heartbeat":[81],"consisting":[82],"collection":[85],"waves":[87],"words":[90],"sentence)":[93],"varying":[95],"morphologies.":[96],"Just":[97],"natural":[99,112],"processing":[101],"(NLP)":[102],"used":[104],"help":[106,122],"computers":[107,123],"comprehend":[108,124],"interpret":[110],"human":[111],"language,":[113],"it":[114,280],"conceivable":[116],"create":[118],"NLP-inspired":[119],"algorithms":[120],"electrocardiogram":[126],"data":[127,180,186],"more":[128],"efficiently.":[129],"In":[130],"this":[131],"study,":[132],"we":[133],"propose":[134],"novel":[136],"analysis":[138],"technique,":[139],"based":[140],"on":[141,203],"embedding":[142,191,205],"self":[144],"attention,":[145],"capture":[147,170],"spatial":[149],"well":[151],"temporal":[154,172],"dependencies":[155,173],"data.":[159],"To":[160],"generate":[161],"embedding,":[163],"encoder-decoder":[165],"network":[166],"was":[167,187,217,229,254,272],"proposed":[168,198],"perform":[179],"compression.":[181],"compressed":[183],"encoded":[185],"fed":[188],"layer":[192,206],"its":[194],"weights.":[195],"Finally,":[196],"CNN-LSTM-Self":[199],"Attention":[200],"classifier":[201],"works":[202],"classifies":[208],"normal":[212],"or":[213],"anomalous.":[214],"approach":[216],"tested":[218],"using":[219],"PTB-xl":[221],"dataset,":[222],"severely":[225],"imbalanced.":[226],"Our":[227],"emphasis":[228],"appropriately":[231],"recognise":[232],"disease":[234,263],"classes":[235],"present":[236],"minority":[238],"numbers,":[239],"order":[241],"limit":[243],"detection":[245],"False":[247],"Negative":[248],"cases.":[249],"An":[250],"accuracy":[251],"91%":[253],"achieved":[255],"good":[258],"F1-score":[259],"all":[261],"classes.":[264],"Additionally,":[265],"size":[268],"model":[271],"reduced":[273],"by":[274],"34%":[275],"due":[276],"compression,":[278],"making":[279],"suitable":[281],"deployment":[283],"real":[285],"time":[286],"applications":[287]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4403753363","counts_by_year":[],"updated_date":"2025-04-04T19:24:09.276577","created_date":"2024-10-26"}