{"id":"https://openalex.org/W4400611926","doi":"https://doi.org/10.48550/arxiv.2407.08507","title":"Bootstrapping Vision-language Models for Self-supervised Remote\n Physiological Measurement","display_name":"Bootstrapping Vision-language Models for Self-supervised Remote\n Physiological Measurement","publication_year":2024,"publication_date":"2024-07-11","ids":{"openalex":"https://openalex.org/W4400611926","doi":"https://doi.org/10.48550/arxiv.2407.08507"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2407.08507","pdf_url":"https://arxiv.org/pdf/2407.08507","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/2407.08507","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5014177040","display_name":"Zijie Yue","orcid":"https://orcid.org/0000-0003-3550-0630"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yue, Zijie","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101675323","display_name":"Miaojing Shi","orcid":"https://orcid.org/0000-0002-4933-0073"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Shi, Miaojing","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5058982350","display_name":"Hanli Wang","orcid":"https://orcid.org/0000-0002-9999-4871"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wang, Hanli","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5109586112","display_name":"Shuai Ding","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ding, Shuai","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5073789459","display_name":"Qijun Chen","orcid":"https://orcid.org/0000-0001-5644-1188"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Chen, Qijun","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5070080394","display_name":"Shanlin Yang","orcid":"https://orcid.org/0000-0002-2965-2761"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yang, Shanlin","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":2,"citation_normalized_percentile":{"value":0.824646,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":88,"max":92},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10429","display_name":"EEG and Brain-Computer Interfaces","score":0.6022,"subfield":{"id":"https://openalex.org/subfields/2805","display_name":"Cognitive Neuroscience"},"field":{"id":"https://openalex.org/fields/28","display_name":"Neuroscience"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},"topics":[{"id":"https://openalex.org/T10429","display_name":"EEG and Brain-Computer Interfaces","score":0.6022,"subfield":{"id":"https://openalex.org/subfields/2805","display_name":"Cognitive Neuroscience"},"field":{"id":"https://openalex.org/fields/28","display_name":"Neuroscience"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/bootstrapping","display_name":"Bootstrapping (finance)","score":0.9161931}],"concepts":[{"id":"https://openalex.org/C207609745","wikidata":"https://www.wikidata.org/wiki/Q4944086","display_name":"Bootstrapping (finance)","level":2,"score":0.9161931},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.55734724},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.45502856},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.42889738},{"id":"https://openalex.org/C62649853","wikidata":"https://www.wikidata.org/wiki/Q199687","display_name":"Remote sensing","level":1,"score":0.37256408},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.33265817},{"id":"https://openalex.org/C2522767166","wikidata":"https://www.wikidata.org/wiki/Q2374463","display_name":"Data science","level":1,"score":0.3280508},{"id":"https://openalex.org/C149782125","wikidata":"https://www.wikidata.org/wiki/Q160039","display_name":"Econometrics","level":1,"score":0.256039},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.23568788},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.14494637}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2407.08507","pdf_url":"https://arxiv.org/pdf/2407.08507","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2407.08507","pdf_url":"https://arxiv.org/pdf/2407.08507","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W3117246195","https://openalex.org/W2997844990","https://openalex.org/W2914363205","https://openalex.org/W2616249226","https://openalex.org/W2098233217","https://openalex.org/W2081850291","https://openalex.org/W1963695443","https://openalex.org/W1598221548","https://openalex.org/W156620619","https://openalex.org/W1534274833"],"abstract_inverted_index":{"Facial":[0],"video-based":[1],"remote":[2,84],"physiological":[3,85],"measurement":[4,86],"is":[5,62,142],"a":[6,21,70,89,109,159],"promising":[7],"research":[8],"area":[9],"for":[10,147,193],"detecting":[11],"human":[12],"vital":[13],"signs":[14],"(e.g.,":[15],"heart":[16],"rate,":[17],"respiration":[18],"frequency)":[19],"in":[20,206],"non-contact":[22],"way.":[23],"Conventional":[24],"approaches":[25],"are":[26],"mostly":[27],"supervised":[28],"learning,":[29],"requiring":[30],"extensive":[31],"collections":[32],"of":[33,55,136,161,223],"facial":[34,90],"videos":[35],"and":[36,97,123,126,152,163,183,187,201,208],"synchronously":[37],"recorded":[38],"photoplethysmography":[39],"(PPG)":[40],"signals.":[41],"To":[42],"tackle":[43],"it,":[44],"self-supervised":[45,72,226],"learning":[46,165,181],"has":[47],"recently":[48],"gained":[49],"attentions;":[50],"due":[51],"to":[52,131,144,167,199],"the":[53,77,83,169,172,178,184,194,203,224],"lack":[54],"ground":[56],"truth":[57],"PPG":[58],"signals,":[59],"its":[60,95],"performance":[61],"however":[63],"limited.":[64],"In":[65],"this":[66],"paper,":[67],"we":[68,92,107],"propose":[69],"novel":[71],"framework":[73],"that":[74,218],"successfully":[75],"integrates":[76],"popular":[78],"vision-language":[79],"models":[80],"(VLMs)":[81],"into":[82],"task.":[87,189],"Given":[88],"video,":[91],"first":[93,195],"augment":[94],"positive":[96,122],"negative":[98,124],"video":[99],"samples":[100,125],"with":[101],"varying":[102],"rPPG":[103,154],"signal":[104,137],"frequencies.":[105,138],"Next,":[106],"introduce":[108],"frequency-oriented":[110],"vision-text":[111,150,179],"pair":[112],"generation":[113],"method":[114,192],"by":[115],"carefully":[116],"creating":[117],"contrastive":[118,164,180,186],"spatio-temporal":[119],"maps":[120],"from":[121],"designing":[127],"proper":[128],"text":[129,209],"prompts":[130],"describe":[132],"their":[133],"relative":[134],"ratios":[135],"A":[139],"pre-trained":[140],"VLM":[141],"employed":[143],"extract":[145],"features":[146],"these":[148],"formed":[149],"pairs":[151],"estimate":[153],"signals":[155],"thereafter.":[156],"We":[157],"develop":[158],"series":[160],"generative":[162],"mechanisms":[166],"optimize":[168],"VLM,":[170],"including":[171],"text-guided":[173],"visual":[174],"map":[175],"reconstruction":[176],"task,":[177,182],"frequency":[185],"ranking":[188],"Overall,":[190],"our":[191],"time":[196],"adapts":[197],"VLMs":[198],"digest":[200],"align":[202],"frequency-related":[204],"knowledge":[205],"vision":[207],"modalities.":[210],"Extensive":[211],"experiments":[212],"on":[213],"four":[214],"benchmark":[215],"datasets":[216],"demonstrate":[217],"it":[219],"significantly":[220],"outperforms":[221],"state":[222],"art":[225],"methods.":[227]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4400611926","counts_by_year":[{"year":2025,"cited_by_count":2}],"updated_date":"2025-04-23T17:56:30.832764","created_date":"2024-07-14"}