{"id":"https://openalex.org/W4400601189","doi":"https://doi.org/10.48550/arxiv.2407.07745","title":"Quantization of KLT Matrices via GMRF Modeling of Image Blocks for\n Adaptive Transform Coding","display_name":"Quantization of KLT Matrices via GMRF Modeling of Image Blocks for\n Adaptive Transform Coding","publication_year":2024,"publication_date":"2024-06-24","ids":{"openalex":"https://openalex.org/W4400601189","doi":"https://doi.org/10.48550/arxiv.2407.07745"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2407.07745","pdf_url":"https://arxiv.org/pdf/2407.07745","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/2407.07745","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5076071693","display_name":"Rashmi Boragolla","orcid":"https://orcid.org/0000-0001-7212-4887"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Boragolla, Rashmi","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5024985986","display_name":"Pradeepa Yahampath","orcid":"https://orcid.org/0000-0001-8495-1310"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yahampath, Pradeepa","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":84},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10901","display_name":"Advanced Data Compression Techniques","score":0.9753,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10901","display_name":"Advanced Data Compression Techniques","score":0.9753,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12898","display_name":"Induction Heating and Inverter Technology","score":0.9265,"subfield":{"id":"https://openalex.org/subfields/2210","display_name":"Mechanical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10688","display_name":"Image and Signal Denoising Methods","score":0.9263,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C28855332","wikidata":"https://www.wikidata.org/wiki/Q198099","display_name":"Quantization (signal processing)","level":2,"score":0.6716889},{"id":"https://openalex.org/C179518139","wikidata":"https://www.wikidata.org/wiki/Q5140297","display_name":"Coding (social sciences)","level":2,"score":0.57728404},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.53034437},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.48910552},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.44622087},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.44551682},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.41286418},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.37811145},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.36243927},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.07125586}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2407.07745","pdf_url":"https://arxiv.org/pdf/2407.07745","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2407.07745","pdf_url":"https://arxiv.org/pdf/2407.07745","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W97916608","https://openalex.org/W4386322429","https://openalex.org/W4289681578","https://openalex.org/W2979160909","https://openalex.org/W2963480671","https://openalex.org/W2952965081","https://openalex.org/W2359364609","https://openalex.org/W2322476848","https://openalex.org/W2114837856","https://openalex.org/W2099355001"],"abstract_inverted_index":{"Forward":[0],"adaptive":[1,158],"transform":[2,10,16,34,123,144,159],"coding":[3,118,145],"of":[4,9,28,87,120,152],"images":[5],"requires":[6],"a":[7,26,30,44,53,89,98,130],"codebook":[8],"matrices":[11,36],"from":[12,38,136],"which":[13,140],"the":[14,79,84,117,121,142,150],"best":[15],"can":[17],"be":[18],"chosen":[19],"for":[20,32,47,67,132],"each":[21],"macroblock.":[22],"Codebook":[23],"construction":[24],"is":[25,76],"problem":[27,75,86],"designing":[29],"quantizer":[31],"Karhunen-L\\'{o}eve":[33],"(KLT)":[35],"estimated":[37],"sample":[39,137],"image":[40,138],"blocks.":[41],"We":[42,147],"present":[43],"novel":[45],"method":[46,131],"KLT":[48],"matrix":[49,73,91],"quantization":[50,74,101],"based":[51],"on":[52],"finite-lattice":[54],"non-causal":[55],"homogeneous":[56],"Gauss-Markov":[57],"random":[58],"field":[59],"(GMRF)":[60],"model":[61],"with":[62],"asymmetric":[63],"Neumann":[64],"boundary":[65],"conditions":[66],"blocks":[68],"in":[69,78],"natural":[70],"images.":[71],"The":[72],"solved":[77],"GMRF":[80,105,133],"parameter":[81,106,134],"space,":[82],"simplifying":[83],"harder":[85],"quantizing":[88],"large":[90],"subject":[92],"to":[93,97,155],"an":[94],"orthonormality":[95],"constraint":[96],"low-dimensional":[99],"vector":[100],"problem.":[102],"Typically":[103],"used":[104],"estimation":[107,135],"methods":[108],"such":[109],"as":[110],"maximum-likelihood":[111],"(ML)":[112],"do":[113],"not":[114],"necessarily":[115],"maximize":[116],"performance":[119],"resulting":[122],"matrices.":[124],"To":[125],"this":[126],"end":[127],"we":[128],"propose":[129],"data,":[139],"maximizes":[141],"high-rate":[143],"gain.":[146],"also":[148],"investigate":[149],"application":[151],"GMRF-based":[153],"transforms":[154],"variable":[156],"block-size":[157],"coding.":[160]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4400601189","counts_by_year":[],"updated_date":"2024-12-10T14:08:39.074453","created_date":"2024-07-13"}