{"id":"https://openalex.org/W4400375177","doi":"https://doi.org/10.48550/arxiv.2407.02424","title":"A Pattern Language for Machine Learning Tasks","display_name":"A Pattern Language for Machine Learning Tasks","publication_year":2024,"publication_date":"2024-07-02","ids":{"openalex":"https://openalex.org/W4400375177","doi":"https://doi.org/10.48550/arxiv.2407.02424"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2407.02424","pdf_url":"https://arxiv.org/pdf/2407.02424","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/2407.02424","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5006352696","display_name":"Benjamin Rodatz","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Rodatz, Benjamin","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5009232671","display_name":"Ian Fan","orcid":"https://orcid.org/0000-0003-3281-7632"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Fan, Ian","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100029926","display_name":"Tuomas Laakkonen","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Laakkonen, Tuomas","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5104344601","display_name":"Neil John Ortega","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ortega, Neil John","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5110894162","display_name":"Thomas Hoffman","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Hoffman, Thomas","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5078037589","display_name":"Vincent Wang-Ma\u015bcianica","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wang-Mascianica, Vincent","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":78},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.3659,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.3659,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.62876475},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.52068913},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.5039713}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2407.02424","pdf_url":"https://arxiv.org/pdf/2407.02424","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2407.02424","pdf_url":"https://arxiv.org/pdf/2407.02424","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4396701345","https://openalex.org/W4396696052","https://openalex.org/W4391375266","https://openalex.org/W3204019825","https://openalex.org/W2748952813","https://openalex.org/W2390279801","https://openalex.org/W2382290278","https://openalex.org/W2376932109","https://openalex.org/W2358668433","https://openalex.org/W2001405890"],"abstract_inverted_index":{"Idealised":[0],"as":[1,6,12,46,142,190],"universal":[2],"approximators,":[3],"learners":[4],"such":[5,141],"neural":[7],"networks":[8],"can":[9],"be":[10],"viewed":[11],"\"variable":[13],"functions\"":[14],"that":[15,31,74,116],"may":[16,42],"become":[17],"one":[18],"of":[19,22,37,51,83,165,194],"a":[20,70,84,113],"range":[21],"concrete":[23],"functions":[24,45,60],"after":[25],"training.":[26],"In":[27],"the":[28,34,49,55,80,150,163],"same":[29],"way":[30],"equations":[32],"constrain":[33],"possible":[35],"values":[36],"variables":[38],"in":[39,104],"algebra,":[40],"we":[41,68,111,123,127],"view":[43],"objective":[44,59],"constraints":[47],"on":[48,179],"behaviour":[50,85,164],"learners.":[52],"We":[53,160,177],"extract":[54],"equivalences":[56],"perfectly":[57],"optimised":[58],"impose,":[61],"calling":[62],"them":[63],"\"tasks\".":[64],"For":[65],"these":[66],"tasks,":[67],"develop":[69],"formal":[71],"graphical":[72],"language":[73,184],"allows":[75],"us":[76],"to:":[77],"(1)":[78],"separate":[79],"core":[81],"tasks":[82],"from":[86],"its":[87],"implementation":[88],"details;":[89],"(2)":[90],"reason":[91],"about":[92],"and":[93,97,101,145,169,183],"design":[94,112],"behaviours":[95],"model-agnostically;":[96],"(3)":[98],"simply":[99],"describe":[100],"unify":[102],"approaches":[103],"machine":[105],"learning":[106],"across":[107,181],"domains.":[108],"As":[109],"proof-of-concept,":[110],"novel":[114],"task":[115,132],"enables":[117],"converting":[118],"classifiers":[119],"into":[120,134],"generative":[121],"models":[122,138],"call":[124],"\"manipulators\",":[125],"which":[126],"implement":[128],"by":[129],"directly":[130],"translating":[131],"specifications":[133],"code.":[135],"The":[136],"resulting":[137],"exhibit":[139],"capabilities":[140],"style":[143],"transfer":[144],"interpretable":[146],"latent-space":[147],"editing,":[148],"without":[149],"need":[151],"for":[152],"custom":[153],"architectures,":[154],"adversarial":[155],"training":[156],"or":[157],"random":[158],"sampling.":[159],"formally":[161],"relate":[162],"manipulators":[166,189],"to":[167,187],"GANs,":[168],"empirically":[170],"demonstrate":[171],"their":[172],"competitive":[173],"performance":[174],"with":[175],"VAEs.":[176],"report":[178],"experiments":[180],"vision":[182],"domains":[185],"aiming":[186],"characterise":[188],"approximate":[191],"Bayesian":[192],"inversions":[193],"discriminative":[195],"classifiers.":[196]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4400375177","counts_by_year":[],"updated_date":"2025-04-04T00:37:03.163343","created_date":"2024-07-06"}