{"id":"https://openalex.org/W4400104380","doi":"https://doi.org/10.48550/arxiv.2406.17908","title":"DeepSense-V2V: A Vehicle-to-Vehicle Multi-Modal Sensing, Localization,\n and Communications Dataset","display_name":"DeepSense-V2V: A Vehicle-to-Vehicle Multi-Modal Sensing, Localization,\n and Communications Dataset","publication_year":2024,"publication_date":"2024-06-25","ids":{"openalex":"https://openalex.org/W4400104380","doi":"https://doi.org/10.48550/arxiv.2406.17908"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2406.17908","pdf_url":"http://arxiv.org/pdf/2406.17908","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2406.17908","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5033831989","display_name":"Jo\u00e3o Morais","orcid":"https://orcid.org/0000-0003-3406-2878"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Morais, Joao","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5089533209","display_name":"Gouranga Charan","orcid":"https://orcid.org/0000-0002-1335-0670"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Charan, Gouranga","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5064913683","display_name":"Nikhil Srinivas","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Srinivas, Nikhil","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5003243464","display_name":"Ahmed Alkhateeb","orcid":"https://orcid.org/0000-0001-5648-1569"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Alkhateeb, Ahmed","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":83,"max":92},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9852,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9852,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12111","display_name":"Industrial Vision Systems and Defect Detection","score":0.9044,"subfield":{"id":"https://openalex.org/subfields/2209","display_name":"Industrial and Manufacturing Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12707","display_name":"Vehicle License Plate Recognition","score":0.9029,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/vehicle-to-vehicle","display_name":"Vehicle-to-vehicle","score":0.54298234}],"concepts":[{"id":"https://openalex.org/C71139939","wikidata":"https://www.wikidata.org/wiki/Q910194","display_name":"Modal","level":2,"score":0.72442096},{"id":"https://openalex.org/C2780241275","wikidata":"https://www.wikidata.org/wiki/Q682677","display_name":"Vehicle-to-vehicle","level":2,"score":0.54298234},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5425485},{"id":"https://openalex.org/C31258907","wikidata":"https://www.wikidata.org/wiki/Q1301371","display_name":"Computer network","level":1,"score":0.15649828},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C188027245","wikidata":"https://www.wikidata.org/wiki/Q750446","display_name":"Polymer chemistry","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2406.17908","pdf_url":"http://arxiv.org/pdf/2406.17908","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2406.17908","pdf_url":"http://arxiv.org/pdf/2406.17908","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4396701345","https://openalex.org/W4396696052","https://openalex.org/W4395014643","https://openalex.org/W4391375266","https://openalex.org/W2748952813","https://openalex.org/W2390279801","https://openalex.org/W2382290278","https://openalex.org/W2376932109","https://openalex.org/W2358668433","https://openalex.org/W2001405890"],"abstract_inverted_index":{"High":[0],"data":[1,90],"rate":[2],"and":[3,20,24,36,62,105,117,124,163],"low-latency":[4],"vehicle-to-vehicle":[5,81],"(V2V)":[6],"communication":[7,29],"are":[8],"essential":[9],"for":[10,59,78,119],"future":[11],"intelligent":[12],"transport":[13],"systems":[14],"to":[15,68,130,147],"enable":[16,169],"coordination,":[17],"enhance":[18],"safety,":[19],"support":[21],"distributed":[22],"computing":[23],"intelligence":[25],"requirements.":[26],"Developing":[27],"effective":[28],"strategies,":[30],"however,":[31],"demands":[32],"realistic":[33],"test":[34],"scenarios":[35],"datasets.":[37],"This":[38,70,149],"is":[39,48,54],"important":[40],"at":[41],"the":[42,57,63,73,115,158],"high-frequency":[43],"bands":[44],"where":[45],"more":[46],"spectrum":[47],"available,":[49],"yet":[50],"harvesting":[51],"this":[52,166],"bandwidth":[53],"challenged":[55],"by":[56],"need":[58],"direction":[60],"transmission":[61],"sensitivity":[64],"of":[65,160],"signal":[66],"propagation":[67],"blockages.":[69],"work":[71,150],"presents":[72,84],"first":[74],"large-scale":[75],"multi-modal":[76],"dataset":[77,110,154,167],"studying":[79],"mmWave":[80],"communications.":[82],"It":[83],"a":[85,92,102],"two-vehicle":[86],"testbed":[87],"that":[88,156],"comprises":[89],"from":[91,145],"360-degree":[93],"camera,":[94],"four":[95,97],"radars,":[96],"60":[98],"GHz":[99],"phased":[100],"arrays,":[101],"3D":[103],"lidar,":[104],"two":[106],"precise":[107],"GPSs.":[108],"The":[109],"contains":[111],"vehicles":[112],"driving":[113],"during":[114],"day":[116],"night":[118],"120":[120],"km":[121,132],"in":[122],"intercity":[123],"rural":[125],"settings,":[126],"with":[127],"speeds":[128],"up":[129],"100":[131],"per":[133],"hour.":[134],"More":[135],"than":[136],"one":[137],"million":[138],"objects":[139],"were":[140],"detected":[141],"across":[142],"all":[143],"images,":[144],"trucks":[146],"bicycles.":[148],"further":[151],"includes":[152],"detailed":[153],"statistics":[155],"prove":[157],"coverage":[159],"various":[161],"situations":[162],"highlights":[164],"how":[165],"can":[168],"novel":[170],"machine-learning":[171],"applications.":[172]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4400104380","counts_by_year":[{"year":2023,"cited_by_count":1}],"updated_date":"2025-01-17T05:08:48.806468","created_date":"2024-06-28"}