{"id":"https://openalex.org/W4400064895","doi":"https://doi.org/10.48550/arxiv.2406.17349","title":"Semantic Deep Hiding for Robust Unlearnable Examples","display_name":"Semantic Deep Hiding for Robust Unlearnable Examples","publication_year":2024,"publication_date":"2024-06-25","ids":{"openalex":"https://openalex.org/W4400064895","doi":"https://doi.org/10.48550/arxiv.2406.17349"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2406.17349","pdf_url":"http://arxiv.org/pdf/2406.17349","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2406.17349","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5006872172","display_name":"Ruohan Meng","orcid":"https://orcid.org/0000-0003-4221-0842"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Meng, Ruohan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5063111124","display_name":"Chenyu Yi","orcid":"https://orcid.org/0000-0001-5002-6549"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yi, Chenyu","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100745226","display_name":"Yi Yu","orcid":"https://orcid.org/0000-0002-8972-9230"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yu, Yi","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5043014699","display_name":"Siyuan Yang","orcid":"https://orcid.org/0000-0001-9483-1419"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yang, Siyuan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5002053931","display_name":"Bingquan Shen","orcid":"https://orcid.org/0009-0006-6442-551X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Shen, Bingquan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5080977911","display_name":"Alex C. Kot","orcid":"https://orcid.org/0000-0001-6262-8125"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Kot, Alex C.","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":81},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10481","display_name":"Computer Graphics and Visualization Techniques","score":0.9671,"subfield":{"id":"https://openalex.org/subfields/1704","display_name":"Computer Graphics and Computer-Aided Design"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10481","display_name":"Computer Graphics and Visualization Techniques","score":0.9671,"subfield":{"id":"https://openalex.org/subfields/1704","display_name":"Computer Graphics and Computer-Aided Design"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12357","display_name":"Digital Media Forensic Detection","score":0.9166,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.57755303},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.514128},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.37504035}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2406.17349","pdf_url":"http://arxiv.org/pdf/2406.17349","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2406.17349","pdf_url":"http://arxiv.org/pdf/2406.17349","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4396701345","https://openalex.org/W4396696052","https://openalex.org/W4391375266","https://openalex.org/W3204019825","https://openalex.org/W2748952813","https://openalex.org/W2390279801","https://openalex.org/W2382290278","https://openalex.org/W2376932109","https://openalex.org/W2358668433","https://openalex.org/W2001405890"],"abstract_inverted_index":{"Ensuring":[0],"data":[1,26,119,217],"privacy":[2],"and":[3,24,73,183,193],"protection":[4],"has":[5],"become":[6],"paramount":[7],"in":[8,214],"the":[9,20,132,135,144,175,180,185],"era":[10],"of":[11,64,138,146],"deep":[12,21],"learning.":[13],"Unlearnable":[14],"examples":[15],"are":[16],"proposed":[17,203],"to":[18,34,51,71,106,129],"mislead":[19],"learning":[22],"models":[23],"prevent":[25],"from":[27],"unauthorized":[28,216],"exploration":[29],"by":[30],"adding":[31],"small":[32],"perturbations":[33,38],"data.":[35],"However,":[36],"such":[37],"(e.g.,":[39],"noise,":[40],"texture,":[41],"color":[42],"change)":[43],"predominantly":[44],"impact":[45],"low-level":[46],"features,":[47,66],"making":[48,67],"them":[49,68,113],"vulnerable":[50],"common":[52],"countermeasures.":[53],"In":[54,80],"contrast,":[55],"semantic":[56,93,159,164,170],"images":[57,94,171],"with":[58,96,114,131],"intricate":[59],"shapes":[60],"have":[61],"a":[62,85,123,151],"wealth":[63],"high-level":[65,97],"more":[69],"resilient":[70],"countermeasures":[72],"potential":[74],"for":[75,172,208],"producing":[76],"robust":[77],"unlearnable":[78,147,209],"examples.":[79],"this":[81,166],"paper,":[82],"we":[83,121,149],"propose":[84],"Deep":[86],"Hiding":[87],"(DH)":[88],"scheme":[89],"that":[90,156,201],"adaptively":[91],"hides":[92],"enriched":[95],"features.":[98],"We":[99],"employ":[100],"an":[101,194],"Invertible":[102],"Neural":[103],"Network":[104],"(INN)":[105],"invisibly":[107],"integrate":[108],"predefined":[109],"images,":[110],"inherently":[111],"hiding":[112],"deceptive":[115],"perturbations.":[116,140],"To":[117,141],"enhance":[118],"unlearnability,":[120],"introduce":[122],"Latent":[124],"Feature":[125],"Concentration":[126],"module,":[127],"designed":[128],"work":[130],"INN,":[133],"regularizing":[134],"intra-class":[136,186],"variance":[137],"these":[139],"further":[142],"boost":[143],"robustness":[145,207],"examples,":[148,210],"design":[150],"Semantic":[152],"Images":[153],"Generation":[154],"module":[155,167],"produces":[157],"hidden":[158],"images.":[160],"By":[161],"utilizing":[162],"similar":[163,169],"information,":[165],"generates":[168],"samples":[173],"within":[174],"same":[176],"classes,":[177],"thereby":[178],"enlarging":[179],"inter-class":[181],"distance":[182],"narrowing":[184],"distance.":[187],"Extensive":[188],"experiments":[189],"on":[190],"CIFAR-10,":[191],"CIFAR-100,":[192],"ImageNet":[195],"subset,":[196],"against":[197],"18":[198],"countermeasures,":[199],"reveal":[200],"our":[202],"method":[204],"exhibits":[205],"outstanding":[206],"demonstrating":[211],"its":[212],"efficacy":[213],"preventing":[215],"exploitation.":[218]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4400064895","counts_by_year":[],"updated_date":"2025-02-14T17:39:33.464337","created_date":"2024-06-27"}