{"id":"https://openalex.org/W4399695614","doi":"https://doi.org/10.48550/arxiv.2406.09078","title":"ONNX-to-Hardware Design Flow for Adaptive Neural-Network Inference on\n FPGAs","display_name":"ONNX-to-Hardware Design Flow for Adaptive Neural-Network Inference on\n FPGAs","publication_year":2024,"publication_date":"2024-06-13","ids":{"openalex":"https://openalex.org/W4399695614","doi":"https://doi.org/10.48550/arxiv.2406.09078"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2406.09078","pdf_url":"http://arxiv.org/pdf/2406.09078","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2406.09078","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5092949914","display_name":"Federico Manca","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Manca, Federico","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5071221924","display_name":"Francesco Ratto","orcid":"https://orcid.org/0000-0001-5756-5879"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ratto, Francesco","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5028624281","display_name":"Francesca Palumbo","orcid":"https://orcid.org/0000-0002-6155-1979"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Palumbo, Francesca","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":78},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.9865,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.9865,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/design-flow","display_name":"Design flow","score":0.4653564},{"id":"https://openalex.org/keywords/reconfigurable-computing","display_name":"Reconfigurable Computing","score":0.4638384}],"concepts":[{"id":"https://openalex.org/C42935608","wikidata":"https://www.wikidata.org/wiki/Q190411","display_name":"Field-programmable gate array","level":2,"score":0.8166461},{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.6642426},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6594156},{"id":"https://openalex.org/C118524514","wikidata":"https://www.wikidata.org/wiki/Q173212","display_name":"Computer architecture","level":1,"score":0.60798234},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.58465445},{"id":"https://openalex.org/C38349280","wikidata":"https://www.wikidata.org/wiki/Q1434290","display_name":"Flow (mathematics)","level":2,"score":0.46747705},{"id":"https://openalex.org/C37135326","wikidata":"https://www.wikidata.org/wiki/Q931942","display_name":"Design flow","level":2,"score":0.4653564},{"id":"https://openalex.org/C142962650","wikidata":"https://www.wikidata.org/wiki/Q240838","display_name":"Reconfigurable computing","level":3,"score":0.4638384},{"id":"https://openalex.org/C149635348","wikidata":"https://www.wikidata.org/wiki/Q193040","display_name":"Embedded system","level":1,"score":0.38790068},{"id":"https://openalex.org/C9390403","wikidata":"https://www.wikidata.org/wiki/Q3966","display_name":"Computer hardware","level":1,"score":0.3639577},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.30957034},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.10755119},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2406.09078","pdf_url":"http://arxiv.org/pdf/2406.09078","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2406.09078","pdf_url":"http://arxiv.org/pdf/2406.09078","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4245257593","https://openalex.org/W3164085601","https://openalex.org/W2152074211","https://openalex.org/W2139962137","https://openalex.org/W2129019972","https://openalex.org/W2126857316","https://openalex.org/W2091330445","https://openalex.org/W1967938402","https://openalex.org/W1612076744","https://openalex.org/W1522032972"],"abstract_inverted_index":{"The":[0,107],"challenges":[1],"involved":[2],"in":[3],"executing":[4],"neural":[5],"networks":[6],"(NNs)":[7],"at":[8,118],"the":[9,39,59,97,101,119],"edge":[10],"include":[11],"providing":[12],"diversity,":[13],"flexibility,":[14],"and":[15,24,35,69,71],"sustainability.":[16],"That":[17],"implies,":[18],"for":[19,54,75],"instance,":[20],"supporting":[21],"evolving":[22],"applications":[23],"algorithms":[25],"energy-efficiently.":[26],"Using":[27],"hardware":[28,76],"or":[29],"software":[30],"accelerators":[31,77],"can":[32,43],"deliver":[33],"fast":[34],"efficient":[36],"computation":[37],"of":[38,61,100],"NNs,":[40],"while":[41],"flexibility":[42],"be":[44],"exploited":[45],"to":[46,63,104,110],"support":[47],"long-term":[48],"adaptivity.":[49,106],"Nonetheless,":[50],"handcrafting":[51],"an":[52,64],"NN":[53,114],"a":[55,85],"specific":[56],"device,":[57],"despite":[58],"possibility":[60],"leading":[62],"optimal":[65],"solution,":[66],"takes":[67],"time":[68],"experience,":[70],"that's":[72],"why":[73],"frameworks":[74],"are":[78],"being":[79],"developed.":[80],"This":[81],"work,":[82],"starting":[83],"from":[84],"preliminary":[86],"semi-integrated":[87],"ONNX-to-hardware":[88],"toolchain":[89,103],"[21],":[90],"focuses":[91],"on":[92,116],"enabling":[93],"approximate":[94],"computing":[95],"leveraging":[96],"distinctive":[98],"ability":[99],"original":[102],"favor":[105],"goal":[108],"is":[109],"allow":[111],"lightweight":[112],"adaptable":[113],"inference":[115],"FPGAs":[117],"edge.":[120]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4399695614","counts_by_year":[],"updated_date":"2025-04-09T01:58:51.039524","created_date":"2024-06-15"}