{"id":"https://openalex.org/W4399695294","doi":"https://doi.org/10.48550/arxiv.2406.08785","title":"BEVSpread: Spread Voxel Pooling for Bird's-Eye-View Representation in\n Vision-based Roadside 3D Object Detection","display_name":"BEVSpread: Spread Voxel Pooling for Bird's-Eye-View Representation in\n Vision-based Roadside 3D Object Detection","publication_year":2024,"publication_date":"2024-06-12","ids":{"openalex":"https://openalex.org/W4399695294","doi":"https://doi.org/10.48550/arxiv.2406.08785"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2406.08785","pdf_url":"http://arxiv.org/pdf/2406.08785","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2406.08785","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100368517","display_name":"Wenjie Wang","orcid":"https://orcid.org/0000-0002-0614-1723"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wang, Wenjie","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5113394962","display_name":"Yehao Lu","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Lu, Yehao","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5088316957","display_name":"Guangcong Zheng","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zheng, Guangcong","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5102688832","display_name":"Shuigen Zhan","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhan, Shuigen","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5087798118","display_name":"Xiaoqing Ye","orcid":"https://orcid.org/0000-0003-3268-880X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ye, Xiaoqing","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5040257967","display_name":"Zichang Tan","orcid":"https://orcid.org/0000-0002-8501-4123"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Tan, Zichang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5075880303","display_name":"Jingdong Wang","orcid":"https://orcid.org/0000-0002-4888-4445"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wang, Jingdong","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5089410490","display_name":"Gaoang Wang","orcid":"https://orcid.org/0000-0002-8403-1538"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wang, Gaoang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5100407758","display_name":"Xi Li","orcid":"https://orcid.org/0000-0003-3023-1662"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Li, Xi","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":84},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10627","display_name":"Advanced Image and Video Retrieval Techniques","score":0.9815,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10627","display_name":"Advanced Image and Video Retrieval Techniques","score":0.9815,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.975,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10191","display_name":"Robotics and Sensor-Based Localization","score":0.9702,"subfield":{"id":"https://openalex.org/subfields/2202","display_name":"Aerospace Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/pooling","display_name":"Pooling","score":0.791987},{"id":"https://openalex.org/keywords/representation","display_name":"Representation","score":0.67075884}],"concepts":[{"id":"https://openalex.org/C70437156","wikidata":"https://www.wikidata.org/wiki/Q7228652","display_name":"Pooling","level":2,"score":0.791987},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.7508429},{"id":"https://openalex.org/C54170458","wikidata":"https://www.wikidata.org/wiki/Q663554","display_name":"Voxel","level":2,"score":0.7322984},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6977189},{"id":"https://openalex.org/C2776359362","wikidata":"https://www.wikidata.org/wiki/Q2145286","display_name":"Representation (politics)","level":3,"score":0.67075884},{"id":"https://openalex.org/C2781238097","wikidata":"https://www.wikidata.org/wiki/Q175026","display_name":"Object (grammar)","level":2,"score":0.65958077},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.55050945},{"id":"https://openalex.org/C2776151529","wikidata":"https://www.wikidata.org/wiki/Q3045304","display_name":"Object detection","level":3,"score":0.46050522},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.38920414},{"id":"https://openalex.org/C58640448","wikidata":"https://www.wikidata.org/wiki/Q42515","display_name":"Cartography","level":1,"score":0.32060045},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.26474413},{"id":"https://openalex.org/C17744445","wikidata":"https://www.wikidata.org/wiki/Q36442","display_name":"Political science","level":0,"score":0.10199922},{"id":"https://openalex.org/C94625758","wikidata":"https://www.wikidata.org/wiki/Q7163","display_name":"Politics","level":2,"score":0.0},{"id":"https://openalex.org/C199539241","wikidata":"https://www.wikidata.org/wiki/Q7748","display_name":"Law","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2406.08785","pdf_url":"http://arxiv.org/pdf/2406.08785","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2406.08785","pdf_url":"http://arxiv.org/pdf/2406.08785","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4390975304","https://openalex.org/W4319309705","https://openalex.org/W4292830139","https://openalex.org/W4287804464","https://openalex.org/W3103989898","https://openalex.org/W3022252430","https://openalex.org/W2953234277","https://openalex.org/W2900413183","https://openalex.org/W2626256601","https://openalex.org/W147410782"],"abstract_inverted_index":{"Vision-based":[0],"roadside":[1,151],"3D":[2],"object":[3],"detection":[4],"has":[5],"attracted":[6],"rising":[7],"attention":[8],"in":[9,18,45,75,178],"autonomous":[10],"driving":[11],"domain,":[12],"since":[13],"it":[14],"encompasses":[15],"inherent":[16],"advantages":[17],"reducing":[19],"blind":[20],"spots":[21],"and":[22,92,128,181],"expanding":[23],"perception":[24],"range.":[25],"While":[26],"previous":[27],"work":[28],"mainly":[29],"focuses":[30],"on":[31,148],"accurately":[32],"estimating":[33],"depth":[34],"or":[35],"height":[36],"for":[37],"2D-to-3D":[38],"mapping,":[39],"ignoring":[40],"the":[41,46,71,94,98,119,123,142,162],"position":[42],"approximation":[43],"error":[44],"voxel":[47,58,144],"pooling":[48,59],"process.":[49],"Inspired":[50],"by":[51,131,169],"this":[52],"insight,":[53],"we":[54],"propose":[55],"a":[56,76,80,90,110,156,170],"novel":[57],"strategy":[60],"to":[61,79,97,116,126],"reduce":[62],"such":[63],"error,":[64],"dubbed":[65],"BEVSpread.":[66],"Specifically,":[67],"instead":[68],"of":[69,122,164,173],"bringing":[70],"image":[72,95],"features":[73,96],"contained":[74],"frustum":[77,87],"point":[78,88],"single":[81],"BEV":[82,100,167],"grid,":[83],"BEVSpread":[84,136,158],"considers":[85],"each":[86],"as":[89,141,155],"source":[91],"spreads":[93],"surrounding":[99],"grids":[101],"with":[102],"adaptive":[103],"weights.":[104],"To":[105],"achieve":[106],"superior":[107],"propagation":[108],"performance,":[109],"specific":[111],"weight":[112],"function":[113],"is":[114],"designed":[115],"dynamically":[117],"control":[118],"decay":[120],"speed":[121],"weights":[124],"according":[125],"distance":[127],"depth.":[129],"Aided":[130],"customized":[132],"CUDA":[133],"parallel":[134],"acceleration,":[135],"achieves":[137],"comparable":[138],"inference":[139],"time":[140],"original":[143],"pooling.":[145],"Extensive":[146],"experiments":[147],"two":[149],"large-scale":[150],"benchmarks":[152],"demonstrate":[153],"that,":[154],"plug-in,":[157],"can":[159],"significantly":[160],"improve":[161],"performance":[163],"existing":[165],"frustum-based":[166],"methods":[168],"large":[171],"margin":[172],"(1.12,":[174],"5.26,":[175],"3.01)":[176],"AP":[177],"vehicle,":[179],"pedestrian":[180],"cyclist.":[182]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4399695294","counts_by_year":[],"updated_date":"2024-12-15T08:43:54.802302","created_date":"2024-06-15"}