{"id":"https://openalex.org/W4399554402","doi":"https://doi.org/10.48550/arxiv.2406.06432","title":"SYM3D: Learning Symmetric Triplanes for Better 3D-Awareness of GANs","display_name":"SYM3D: Learning Symmetric Triplanes for Better 3D-Awareness of GANs","publication_year":2024,"publication_date":"2024-06-10","ids":{"openalex":"https://openalex.org/W4399554402","doi":"https://doi.org/10.48550/arxiv.2406.06432"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2406.06432","pdf_url":"http://arxiv.org/pdf/2406.06432","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2406.06432","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5101561717","display_name":"Jing Yang","orcid":"https://orcid.org/0000-0002-3933-7212"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yang, Jing","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5114101935","display_name":"Kyle Fogarty","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Fogarty, Kyle","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5084520143","display_name":"Fangcheng Zhong","orcid":"https://orcid.org/0000-0001-5964-5282"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhong, Fangcheng","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5046322671","display_name":"Cengiz \u00d6ztireli","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Oztireli, Cengiz","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":77},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10812","display_name":"Human Pose and Action Recognition","score":0.8713,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10812","display_name":"Human Pose and Action Recognition","score":0.8713,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.7971,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10444","display_name":"Context-Aware Activity Recognition Systems","score":0.7264,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C15744967","wikidata":"https://www.wikidata.org/wiki/Q9418","display_name":"Psychology","level":0,"score":0.43455315},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.3490665}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2406.06432","pdf_url":"http://arxiv.org/pdf/2406.06432","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2406.06432","pdf_url":"http://arxiv.org/pdf/2406.06432","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4396701345","https://openalex.org/W4396696052","https://openalex.org/W4395014643","https://openalex.org/W4391375266","https://openalex.org/W2748952813","https://openalex.org/W2390279801","https://openalex.org/W2382290278","https://openalex.org/W2376932109","https://openalex.org/W2358668433","https://openalex.org/W2001405890"],"abstract_inverted_index":{"Despite":[0],"the":[1,37,53,99,119,157,168,174],"growing":[2],"success":[3],"of":[4,40,55,83,159,170],"3D-aware":[5,94],"GANs,":[6],"which":[7],"can":[8],"be":[9],"trained":[10,149],"on":[11,22,71,125,150],"2D":[12],"images":[13,24],"to":[14,28,48,78,97],"generate":[15,79],"high-quality":[16],"3D":[17,56,84,120,171],"assets,":[18],"they":[19],"still":[20,76],"rely":[21],"multi-view":[23,42],"with":[25,64],"camera":[26,61,66,73],"annotations":[27,63],"synthesize":[29],"sufficient":[30],"details":[31],"from":[32],"all":[33],"viewing":[34],"directions.":[35],"However,":[36],"scarce":[38],"availability":[39],"calibrated":[41],"image":[43],"datasets,":[44],"especially":[45],"in":[46,105,117,141,163,167,173],"comparison":[47],"single-view":[49,152],"images,":[50],"has":[51],"limited":[52],"potential":[54],"GANs.":[57],"Moreover,":[58],"while":[59],"bypassing":[60],"pose":[62],"a":[65,80,92,111],"distribution":[67],"constraint":[68],"reduces":[69],"dependence":[70],"exact":[72],"parameters,":[74],"it":[75],"struggles":[77],"consistent":[81],"orientation":[82],"assets.":[85],"To":[86],"this":[87],"end,":[88],"we":[89,155],"propose":[90],"SYM3D,":[91],"novel":[93],"GAN":[95],"designed":[96],"leverage":[98],"prevalent":[100],"reflectional":[101],"symmetry":[102,161],"structure":[103],"found":[104],"natural":[106],"and":[107,131,133,145],"man-made":[108],"objects,":[109],"alongside":[110],"proposed":[112],"view-aware":[113],"spatial":[114],"attention":[115],"mechanism":[116],"learning":[118],"representation.":[121],"We":[122],"evaluate":[123],"SYM3D":[124],"both":[126],"synthetic":[127],"(ShapeNet":[128],"Chairs,":[129],"Cars,":[130],"Airplanes)":[132],"real-world":[134],"datasets":[135],"(ABO-Chair),":[136],"demonstrating":[137],"its":[138],"superior":[139],"performance":[140],"capturing":[142],"detailed":[143],"geometry":[144],"texture,":[146],"even":[147],"when":[148],"only":[151],"images.":[153],"Finally,":[154],"demonstrate":[156],"effectiveness":[158],"incorporating":[160],"regularization":[162],"helping":[164],"reduce":[165],"artifacts":[166],"modeling":[169],"assets":[172],"text-to-3D":[175],"task.":[176]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4399554402","counts_by_year":[],"updated_date":"2025-04-23T18:11:06.514655","created_date":"2024-06-12"}