{"id":"https://openalex.org/W4399596924","doi":"https://doi.org/10.48550/arxiv.2406.05658","title":"Visual Prompt Tuning in Null Space for Continual Learning","display_name":"Visual Prompt Tuning in Null Space for Continual Learning","publication_year":2024,"publication_date":"2024-06-09","ids":{"openalex":"https://openalex.org/W4399596924","doi":"https://doi.org/10.48550/arxiv.2406.05658"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2406.05658","pdf_url":"http://arxiv.org/pdf/2406.05658","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2406.05658","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100625436","display_name":"Yue Lu","orcid":"https://orcid.org/0000-0001-7472-9935"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Lu, Yue","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101626020","display_name":"Shizhou Zhang","orcid":"https://orcid.org/0000-0002-5914-7109"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhang, Shizhou","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5067159497","display_name":"De Cheng","orcid":"https://orcid.org/0000-0003-4603-847X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Cheng, De","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5089584286","display_name":"Yinghui Xing","orcid":"https://orcid.org/0000-0001-6021-8261"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Xing, Yinghui","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100774865","display_name":"Nannan Wang","orcid":"https://orcid.org/0000-0002-9013-0612"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wang, Nannan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5056713887","display_name":"P.S.P. Wang","orcid":"https://orcid.org/0000-0002-6205-1730"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wang, Peng","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5028235866","display_name":"Yanning Zhang","orcid":"https://orcid.org/0000-0002-2977-8057"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhang, Yanning","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":77},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T13114","display_name":"Image Processing Techniques and Applications","score":0.7118,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T13114","display_name":"Image Processing Techniques and Applications","score":0.7118,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11283","display_name":"Experimental Learning in Engineering","score":0.6166,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.5759,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/null","display_name":"Null (SQL)","score":0.63813853}],"concepts":[{"id":"https://openalex.org/C203763787","wikidata":"https://www.wikidata.org/wiki/Q371029","display_name":"Null (SQL)","level":2,"score":0.63813853},{"id":"https://openalex.org/C2778572836","wikidata":"https://www.wikidata.org/wiki/Q380933","display_name":"Space (punctuation)","level":2,"score":0.5728042},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.3980264},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.35420814},{"id":"https://openalex.org/C15744967","wikidata":"https://www.wikidata.org/wiki/Q9418","display_name":"Psychology","level":0,"score":0.34775645},{"id":"https://openalex.org/C180747234","wikidata":"https://www.wikidata.org/wiki/Q23373","display_name":"Cognitive psychology","level":1,"score":0.3212824},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.091471106},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2406.05658","pdf_url":"http://arxiv.org/pdf/2406.05658","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2406.05658","pdf_url":"http://arxiv.org/pdf/2406.05658","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4391375266","https://openalex.org/W2931662336","https://openalex.org/W2748952813","https://openalex.org/W2389183782","https://openalex.org/W2219563043","https://openalex.org/W2212197444","https://openalex.org/W2157169416","https://openalex.org/W1994829526","https://openalex.org/W1885898241","https://openalex.org/W1570309050"],"abstract_inverted_index":{"Existing":[0],"prompt-tuning":[1],"methods":[2],"have":[3,56,115],"demonstrated":[4],"impressive":[5],"performances":[6,187],"in":[7,17,35,63,71,81,109,144],"continual":[8],"learning":[9],"(CL),":[10],"by":[11,31,43,106],"selecting":[12],"and":[13,88,95,182],"updating":[14],"relevant":[15],"prompts":[16,34],"the":[18,22,33,36,40,68,72,76,82,93,100,107,110,123,141,160,169],"vision-transformer":[19],"models.":[20],"On":[21],"contrary,":[23],"this":[24],"paper":[25],"aims":[26],"to":[27,39,49,59,121,158,188],"learn":[28],"each":[29],"task":[30],"tuning":[32],"direction":[37],"orthogonal":[38,69,79,126,163],"subspace":[41],"spanned":[42],"previous":[44],"tasks'":[45],"features,":[46],"so":[47],"as":[48],"ensure":[50],"no":[51],"interference":[52,135],"on":[53,136,173],"tasks":[54],"that":[55],"been":[57,156],"learned":[58,138],"overcome":[60],"catastrophic":[61],"forgetting":[62],"CL.":[64],"However,":[65],"different":[66,87],"from":[67],"projection":[70,80],"traditional":[73],"CNN":[74],"architecture,":[75],"prompt":[77,103,124,146,161],"gradient":[78,125,162],"ViT":[83],"architecture":[84],"shows":[85],"completely":[86],"greater":[89],"challenges,":[90],"i.e.,":[91],"1)":[92],"high-order":[94],"non-linear":[96],"self-attention":[97,142],"operation;":[98],"2)":[99],"drift":[101],"of":[102,133,171],"distribution":[104],"brought":[105],"LayerNorm":[108],"transformer":[111],"block.":[112],"Theoretically,":[113],"we":[114],"finally":[116],"deduced":[117],"two":[118],"consistency":[119],"conditions":[120],"achieve":[122],"projection,":[127],"which":[128],"provide":[129],"a":[130],"theoretical":[131],"guarantee":[132],"eliminating":[134],"previously":[137],"knowledge":[139],"via":[140],"mechanism":[143],"visual":[145],"tuning.":[147],"In":[148],"practice,":[149],"an":[150],"effective":[151],"null-space-based":[152],"approximation":[153],"solution":[154],"has":[155],"proposed":[157],"implement":[159],"projection.":[164],"Extensive":[165],"experimental":[166],"results":[167],"demonstrate":[168],"effectiveness":[170],"anti-forgetting":[172],"four":[174],"class-incremental":[175],"benchmarks":[176],"with":[177],"diverse":[178],"pre-trained":[179],"baseline":[180],"models,":[181],"our":[183],"approach":[184],"achieves":[185],"superior":[186],"state-of-the-art":[189],"methods.":[190],"Our":[191],"code":[192],"is":[193],"available":[194],"at":[195],"https://github.com/zugexiaodui/VPTinNSforCL.":[196]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4399596924","counts_by_year":[],"updated_date":"2025-04-16T16:22:01.634304","created_date":"2024-06-13"}