{"id":"https://openalex.org/W4399455143","doi":"https://doi.org/10.48550/arxiv.2406.04081","title":"Bootstrapping Expectiles in Reinforcement Learning","display_name":"Bootstrapping Expectiles in Reinforcement Learning","publication_year":2024,"publication_date":"2024-06-06","ids":{"openalex":"https://openalex.org/W4399455143","doi":"https://doi.org/10.48550/arxiv.2406.04081"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2406.04081","pdf_url":"https://arxiv.org/pdf/2406.04081","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/2406.04081","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5113950734","display_name":"Pierre J. Clavier","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Clavier, Pierre","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5049708660","display_name":"Emmanuel Rachelson","orcid":"https://orcid.org/0000-0002-8559-1617"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Rachelson, Emmanuel","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5071977875","display_name":"Erwan Le Pennec","orcid":"https://orcid.org/0000-0002-7988-7999"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Pennec, Erwan Le","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5110482875","display_name":"Matthieu Geist","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Geist, Matthieu","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":84},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11975","display_name":"Evolutionary Algorithms and Applications","score":0.3147,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11975","display_name":"Evolutionary Algorithms and Applications","score":0.3147,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/bootstrapping","display_name":"Bootstrapping (finance)","score":0.9215765}],"concepts":[{"id":"https://openalex.org/C207609745","wikidata":"https://www.wikidata.org/wiki/Q4944086","display_name":"Bootstrapping (finance)","level":2,"score":0.9215765},{"id":"https://openalex.org/C97541855","wikidata":"https://www.wikidata.org/wiki/Q830687","display_name":"Reinforcement learning","level":2,"score":0.8005936},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.59074414},{"id":"https://openalex.org/C67203356","wikidata":"https://www.wikidata.org/wiki/Q1321905","display_name":"Reinforcement","level":2,"score":0.46885714},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.39208496},{"id":"https://openalex.org/C149782125","wikidata":"https://www.wikidata.org/wiki/Q160039","display_name":"Econometrics","level":1,"score":0.33663297},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.32159793},{"id":"https://openalex.org/C15744967","wikidata":"https://www.wikidata.org/wiki/Q9418","display_name":"Psychology","level":0,"score":0.2378962},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.18074888},{"id":"https://openalex.org/C77805123","wikidata":"https://www.wikidata.org/wiki/Q161272","display_name":"Social psychology","level":1,"score":0.12064019}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2406.04081","pdf_url":"https://arxiv.org/pdf/2406.04081","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2406.04081","pdf_url":"https://arxiv.org/pdf/2406.04081","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W3117246195","https://openalex.org/W2997844990","https://openalex.org/W2914363205","https://openalex.org/W2616249226","https://openalex.org/W2098233217","https://openalex.org/W2081850291","https://openalex.org/W1963695443","https://openalex.org/W1598221548","https://openalex.org/W156620619","https://openalex.org/W1534274833"],"abstract_inverted_index":{"Many":[0],"classic":[1,79,119,139],"Reinforcement":[2],"Learning":[3],"(RL)":[4],"algorithms":[5],"rely":[6],"on":[7],"a":[8,27,54,118,145,167],"Bellman":[9],"operator,":[10],"which":[11,78,153],"involves":[12],"an":[13,38],"expectation":[14,36],"over":[15],"the":[16,21,50,60,74,85,104,110,128,172,177],"next":[17],"states,":[18],"leading":[19],"to":[20,33],"concept":[22],"of":[23,29,88,127,147,179],"bootstrapping.":[24],"To":[25],"introduce":[26,144],"form":[28],"pessimism,":[30],"we":[31,107,130,162],"propose":[32],"replace":[34],"this":[35,42],"with":[37,53,150,156,166],"expectile.":[39],"In":[40],"practice,":[41],"can":[43],"be":[44],"very":[45],"simply":[46],"done":[47],"by":[48],"replacing":[49],"$L_2$":[51],"loss":[52,58],"more":[55,136],"general":[56],"expectile":[57,173],"for":[59,68,169],"critic.":[61],"Introducing":[62],"pessimism":[63,180],"in":[64],"RL":[65,92,123,140,159],"is":[66,135,154,176],"desirable":[67],"various":[69],"reasons,":[70],"such":[71],"as":[72],"tackling":[73],"overestimation":[75,105],"problem":[76],"(for":[77],"solutions":[80],"are":[81,95],"double":[82],"Q-learning":[83],"or":[84,90],"twin-critic":[86],"approach":[87,134],"TD3)":[89],"robust":[91,122,137,158],"(where":[93],"transitions":[94],"adversarial).":[96],"We":[97,142],"study":[98],"empirically":[99],"these":[100],"two":[101],"cases.":[102],"For":[103],"problem,":[106],"show":[108,131],"that":[109,132,175],"proposed":[111],"approach,":[112],"ExpectRL,":[113],"provides":[114],"better":[115],"results":[116],"than":[117,138],"twin-critic.":[120],"On":[121],"benchmarks,":[124],"involving":[125],"changes":[126],"environment,":[129],"our":[133],"algorithms.":[141],"also":[143,163],"variation":[146],"ExpectRL":[148],"combined":[149],"domain":[151],"randomization":[152],"competitive":[155],"state-of-the-art":[157],"agents.":[160],"Eventually,":[161],"extend":[164],"\\ExpectRL":[165],"mechanism":[168],"choosing":[170],"automatically":[171],"value,":[174],"degree":[178]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4399455143","counts_by_year":[],"updated_date":"2024-12-15T08:51:58.036907","created_date":"2024-06-08"}