{"id":"https://openalex.org/W4399418231","doi":"https://doi.org/10.48550/arxiv.2406.02162","title":"BiVocoder: A Bidirectional Neural Vocoder Integrating Feature Extraction\n and Waveform Generation","display_name":"BiVocoder: A Bidirectional Neural Vocoder Integrating Feature Extraction\n and Waveform Generation","publication_year":2024,"publication_date":"2024-06-04","ids":{"openalex":"https://openalex.org/W4399418231","doi":"https://doi.org/10.48550/arxiv.2406.02162"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2406.02162","pdf_url":"https://arxiv.org/pdf/2406.02162","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/2406.02162","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5067982618","display_name":"Hui-Peng Du","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Du, Hui-Peng","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5072371384","display_name":"Ye-Xin Lu","orcid":"https://orcid.org/0009-0009-8026-0702"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Lu, Ye-Xin","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5113242639","display_name":"Yang Ai","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ai, Yang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5069176378","display_name":"Zhen-Hua Ling","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ling, Zhen-Hua","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":83},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10201","display_name":"Speech Recognition and Synthesis","score":0.8925,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10201","display_name":"Speech Recognition and Synthesis","score":0.8925,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10860","display_name":"Speech and Audio Processing","score":0.8348,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.783,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.5135927}],"concepts":[{"id":"https://openalex.org/C197424946","wikidata":"https://www.wikidata.org/wiki/Q1165717","display_name":"Waveform","level":3,"score":0.78849757},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6485672},{"id":"https://openalex.org/C28490314","wikidata":"https://www.wikidata.org/wiki/Q189436","display_name":"Speech recognition","level":1,"score":0.56321234},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.55009806},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.5135927},{"id":"https://openalex.org/C4725764","wikidata":"https://www.wikidata.org/wiki/Q844704","display_name":"Extraction (chemistry)","level":2,"score":0.45149466},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.45009005},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.41561395},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.41175795},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.35242444},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.11346722},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.08290097},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.040709674},{"id":"https://openalex.org/C554190296","wikidata":"https://www.wikidata.org/wiki/Q47528","display_name":"Radar","level":2,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C43617362","wikidata":"https://www.wikidata.org/wiki/Q170050","display_name":"Chromatography","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2406.02162","pdf_url":"https://arxiv.org/pdf/2406.02162","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2406.02162","pdf_url":"https://arxiv.org/pdf/2406.02162","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4367555392","https://openalex.org/W3040712279","https://openalex.org/W2883092465","https://openalex.org/W2374664672","https://openalex.org/W2364769705","https://openalex.org/W2176409448","https://openalex.org/W2129841057","https://openalex.org/W2114441484","https://openalex.org/W2056136368","https://openalex.org/W1974895211"],"abstract_inverted_index":{"This":[0],"paper":[1],"proposes":[2],"a":[3,85],"novel":[4],"bidirectional":[5],"neural":[6,50],"vocoder,":[7],"named":[8],"BiVocoder,":[9],"capable":[10],"both":[11,115,123],"of":[12],"feature":[13,27],"extraction":[14],"and":[15,33,45,78,119,125],"reverse":[16],"waveform":[17,72],"generation":[18],"within":[19],"the":[20,29,74,82,94],"short-time":[21],"Fourier":[22],"transform":[23],"(STFT)":[24],"domain.":[25],"For":[26,71],"extraction,":[28],"BiVocoder":[30,75,103],"takes":[31],"amplitude":[32,77],"phase":[34,79],"spectra":[35,80],"derived":[36],"from":[37,81],"STFT":[38,91],"as":[39],"inputs,":[40],"transforms":[41],"them":[42],"into":[43],"long-frame-shift":[44],"low-dimensional":[46],"features":[47,54,83],"through":[48],"convolutional":[49],"networks.":[51],"The":[52],"extracted":[53],"are":[55],"demonstrated":[56],"suitable":[57],"for":[58,122],"direct":[59],"prediction":[60],"by":[61,84,89,112],"acoustic":[62],"models,":[63],"supporting":[64],"its":[65],"application":[66],"in":[67],"text-to-speech":[68],"(TTS)":[69],"task.":[70],"generation,":[73],"restores":[76],"symmetric":[86],"network,":[87],"followed":[88],"inverse":[90],"to":[92,108],"reconstruct":[93],"speech":[95,117],"waveform.":[96],"Experimental":[97],"results":[98],"show":[99],"that":[100],"our":[101],"proposed":[102],"achieves":[104],"better":[105],"performance":[106],"compared":[107],"some":[109],"baseline":[110],"vocoders,":[111],"comprehensively":[113],"considering":[114],"synthesized":[116],"quality":[118],"inference":[120],"speed":[121],"analysis-synthesis":[124],"TTS":[126],"tasks.":[127]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4399418231","counts_by_year":[],"updated_date":"2025-01-20T23:53:53.194317","created_date":"2024-06-08"}