{"id":"https://openalex.org/W4399400854","doi":"https://doi.org/10.48550/arxiv.2406.01115","title":"Cohort Squeeze: Beyond a Single Communication Round per Cohort in\n Cross-Device Federated Learning","display_name":"Cohort Squeeze: Beyond a Single Communication Round per Cohort in\n Cross-Device Federated Learning","publication_year":2024,"publication_date":"2024-06-03","ids":{"openalex":"https://openalex.org/W4399400854","doi":"https://doi.org/10.48550/arxiv.2406.01115"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2406.01115","pdf_url":"https://arxiv.org/pdf/2406.01115","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/2406.01115","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100863301","display_name":"Yi Kai","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yi, Kai","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5099038658","display_name":"Timur Kharisov","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Kharisov, Timur","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5102027815","display_name":"Igor Sokolov","orcid":"https://orcid.org/0000-0002-2338-0187"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Sokolov, Igor","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5036598221","display_name":"Peter Richt\u00e1rik","orcid":"https://orcid.org/0000-0003-4380-5848"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Richt\u00e1rik, Peter","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":84},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10764","display_name":"Privacy-Preserving Technologies in Data","score":0.9949,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10764","display_name":"Privacy-Preserving Technologies in Data","score":0.9949,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13553","display_name":"Age of Information Optimization","score":0.9201,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C72563966","wikidata":"https://www.wikidata.org/wiki/Q1303415","display_name":"Cohort","level":2,"score":0.73975503},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.47990334},{"id":"https://openalex.org/C201903717","wikidata":"https://www.wikidata.org/wiki/Q1778788","display_name":"Cohort study","level":2,"score":0.43579695},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.35902107},{"id":"https://openalex.org/C126322002","wikidata":"https://www.wikidata.org/wiki/Q11180","display_name":"Internal medicine","level":1,"score":0.07456359}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2406.01115","pdf_url":"https://arxiv.org/pdf/2406.01115","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2406.01115","pdf_url":"https://arxiv.org/pdf/2406.01115","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4391375266","https://openalex.org/W3081332639","https://openalex.org/W2782606626","https://openalex.org/W2748952813","https://openalex.org/W2330453918","https://openalex.org/W2148718224","https://openalex.org/W2103425699","https://openalex.org/W2055704044","https://openalex.org/W1986135018","https://openalex.org/W1606496894"],"abstract_inverted_index":{"Virtually":[0],"all":[1],"federated":[2],"learning":[3],"(FL)":[4],"methods,":[5],"including":[6],"FedAvg,":[7],"operate":[8],"in":[9,87,123,146,157],"the":[10,18,53,59,93,135,147,158,170],"following":[11],"manner:":[12],"i)":[13],"an":[14],"orchestrating":[15],"server":[16,60,94],"sends":[17],"current":[19],"model":[20,69,156],"parameters":[21],"to":[22,58,111,141,143,152,189,194],"a":[23,37,68,88,124,154,166,178],"cohort":[24,84,118],"of":[25,70,78,116,169,181,186],"clients":[26,33],"selected":[27],"via":[28,42],"certain":[29],"rule,":[30],"ii)":[31],"these":[32,79],"then":[34],"independently":[35],"perform":[36],"local":[38],"training":[39,49],"procedure":[40],"(e.g.,":[41],"SGD":[43],"or":[44],"Adam)":[45],"using":[46],"their":[47],"own":[48],"data,":[50],"and":[51,105,137],"iii)":[52],"resulting":[54],"models":[55],"are":[56],"shipped":[57],"for":[61],"aggregation.":[62],"This":[63],"process":[64],"is":[65,73,81,85,109,121,133,163],"repeated":[66],"until":[67],"suitable":[71],"quality":[72],"found.":[74],"A":[75],"notable":[76],"feature":[77],"methods":[80],"that":[82,131],"each":[83,117],"involved":[86],"single":[89,125],"communication":[90,126,149],"round":[91],"with":[92],"only.":[95],"In":[96],"this":[97,101,132],"work":[98],"we":[99,129],"challenge":[100],"algorithmic":[102],"design":[103],"primitive":[104],"investigate":[106],"whether":[107],"it":[108],"possible":[110,122],"``squeeze":[112],"more":[113],"juice\"":[114],"out":[115],"than":[119],"what":[120],"round.":[127],"Surprisingly,":[128],"find":[130],"indeed":[134],"case,":[136],"our":[138],"approach":[139],"leads":[140],"up":[142],"74%":[144],"reduction":[145],"total":[148],"cost":[150],"needed":[151],"train":[153],"FL":[155],"cross-device":[159],"setting.":[160],"Our":[161],"method":[162,174],"based":[164],"on":[165],"novel":[167],"variant":[168],"stochastic":[171],"proximal":[172],"point":[173],"(SPPM-AS)":[175],"which":[176,187],"supports":[177],"large":[179],"collection":[180],"client":[182,196],"sampling":[183],"procedures":[184],"some":[185],"lead":[188],"further":[190],"gains":[191],"when":[192],"compared":[193],"classical":[195],"selection":[197],"approaches.":[198]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4399400854","counts_by_year":[],"updated_date":"2024-12-10T13:53:13.882812","created_date":"2024-06-07"}