{"id":"https://openalex.org/W4399395088","doi":"https://doi.org/10.48550/arxiv.2406.00291","title":"Multi-objective Neural Architecture Search by Learning Search Space\n Partitions","display_name":"Multi-objective Neural Architecture Search by Learning Search Space\n Partitions","publication_year":2024,"publication_date":"2024-05-31","ids":{"openalex":"https://openalex.org/W4399395088","doi":"https://doi.org/10.48550/arxiv.2406.00291"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2406.00291","pdf_url":"https://arxiv.org/pdf/2406.00291","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/2406.00291","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5101807118","display_name":"Yiyang Zhao","orcid":"https://orcid.org/0000-0003-1221-1414"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhao, Yiyang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5010181097","display_name":"Linnan Wang","orcid":"https://orcid.org/0000-0001-6114-7098"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wang, Linnan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5111339033","display_name":"Guo Tian","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Guo, Tian","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":77},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.9685,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.9685,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T14339","display_name":"Image Processing and 3D Reconstruction","score":0.9307,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12535","display_name":"Machine Learning and Data Classification","score":0.9256,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C2778572836","wikidata":"https://www.wikidata.org/wiki/Q380933","display_name":"Space (punctuation)","level":2,"score":0.63080776},{"id":"https://openalex.org/C123657996","wikidata":"https://www.wikidata.org/wiki/Q12271","display_name":"Architecture","level":2,"score":0.6176874},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5445933},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.46837646},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.11782506},{"id":"https://openalex.org/C166957645","wikidata":"https://www.wikidata.org/wiki/Q23498","display_name":"Archaeology","level":1,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2406.00291","pdf_url":"https://arxiv.org/pdf/2406.00291","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2406.00291","pdf_url":"https://arxiv.org/pdf/2406.00291","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W590712855","https://openalex.org/W4396701345","https://openalex.org/W4396696052","https://openalex.org/W4391375266","https://openalex.org/W2748952813","https://openalex.org/W2390279801","https://openalex.org/W2382290278","https://openalex.org/W2376932109","https://openalex.org/W2358668433","https://openalex.org/W2001405890"],"abstract_inverted_index":{"Deploying":[0],"deep":[1,26,36],"learning":[2,27,108],"models":[3],"requires":[4,69],"taking":[5],"into":[6],"consideration":[7],"neural":[8,37,47],"network":[9],"metrics":[10],"such":[11],"as":[12],"model":[13,28,110,201],"size,":[14],"inference":[15,21],"latency,":[16],"and":[17,119,150],"#FLOPs,":[18],"aside":[19],"from":[20,111],"accuracy.":[22],"This":[23,68],"results":[24],"in":[25,39,169,177,192],"designers":[29],"leveraging":[30],"multi-objective":[31,44,71,152],"optimization":[32,149],"to":[33,46,74,114,126,147,173],"design":[34],"effective":[35,70],"networks":[38],"multiple":[40],"criteria.":[41],"However,":[42],"applying":[43],"optimizations":[45],"architecture":[48],"search":[49,60,72,105,117,195],"(NAS)":[50],"is":[51],"nontrivial":[52],"because":[53],"NAS":[54,97,156],"tasks":[55],"usually":[56],"have":[57],"a":[58,64,84,90,100,109,128,166],"huge":[59],"space,":[61],"along":[62],"with":[63,162,186,206],"non-negligible":[65],"searching":[66],"cost.":[67],"algorithms":[73],"alleviate":[75],"the":[76,104,116,131],"GPU":[77],"costs.":[78],"In":[79,99],"this":[80],"work,":[81],"we":[82,136],"implement":[83],"novel":[85],"multi-objectives":[86],"optimizer":[87],"based":[88],"on":[89,96,122,154,190],"recently":[91],"proposed":[92],"meta-algorithm":[93],"called":[94],"LaMOO":[95,102,182],"tasks.":[98],"nutshell,":[101],"speedups":[103],"process":[106],"by":[107],"observed":[112],"samples":[113],"partition":[115],"space":[118],"then":[120],"focusing":[121],"promising":[123],"regions":[124],"likely":[125],"contain":[127],"subset":[129],"of":[130,140],"Pareto":[132],"frontier.":[133],"Using":[134],"LaMOO,":[135,163],"observe":[137],"an":[138],"improvement":[139,168],"more":[141],"than":[142],"200%":[143],"sample":[144,170],"efficiency":[145,171],"compared":[146,172],"Bayesian":[148],"evolutionary-based":[151],"optimizers":[153],"different":[155],"datasets.":[157],"For":[158,179],"example,":[159],"when":[160],"combined":[161],"qEHVI":[164,175],"achieves":[165,183],"225%":[167],"using":[174],"alone":[176],"NasBench201.":[178],"real-world":[180],"tasks,":[181],"97.36%":[184],"accuracy":[185,205],"only":[187,193,207],"1.62M":[188],"#Params":[189],"CIFAR10":[191],"600":[194],"samples.":[196],"On":[197],"ImageNet,":[198],"our":[199],"large":[200],"reaches":[202],"80.4%":[203],"top-1":[204],"522M":[208],"#FLOPs.":[209]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4399395088","counts_by_year":[],"updated_date":"2025-04-23T18:14:26.168938","created_date":"2024-06-07"}