{"id":"https://openalex.org/W4399317859","doi":"https://doi.org/10.48550/arxiv.2405.20884","title":"Effects of Dataset Sampling Rate for Noise Cancellation through Deep\n Learning","display_name":"Effects of Dataset Sampling Rate for Noise Cancellation through Deep\n Learning","publication_year":2024,"publication_date":"2024-05-30","ids":{"openalex":"https://openalex.org/W4399317859","doi":"https://doi.org/10.48550/arxiv.2405.20884"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2405.20884","pdf_url":"https://arxiv.org/pdf/2405.20884","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/2405.20884","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5094255377","display_name":"Brandon Curtis Colelough","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Colelough, Brandon","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5101662002","display_name":"Andrew Zheng","orcid":"https://orcid.org/0009-0000-3201-4456"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zheng, Andrew","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":82},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10860","display_name":"Speech and Audio Processing","score":0.8463,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10860","display_name":"Speech and Audio Processing","score":0.8463,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10688","display_name":"Image and Signal Denoising Methods","score":0.7365,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/active-noise-control","display_name":"Active Noise Control","score":0.43242827}],"concepts":[{"id":"https://openalex.org/C140779682","wikidata":"https://www.wikidata.org/wiki/Q210868","display_name":"Sampling (signal processing)","level":3,"score":0.60859203},{"id":"https://openalex.org/C99498987","wikidata":"https://www.wikidata.org/wiki/Q2210247","display_name":"Noise (video)","level":3,"score":0.5610899},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.48995414},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.45215675},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.4336034},{"id":"https://openalex.org/C100342000","wikidata":"https://www.wikidata.org/wiki/Q583234","display_name":"Active noise control","level":3,"score":0.43242827},{"id":"https://openalex.org/C28490314","wikidata":"https://www.wikidata.org/wiki/Q189436","display_name":"Speech recognition","level":1,"score":0.37882796},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.3482831},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.24055731},{"id":"https://openalex.org/C163294075","wikidata":"https://www.wikidata.org/wiki/Q581861","display_name":"Noise reduction","level":2,"score":0.1604878},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.07754475},{"id":"https://openalex.org/C106131492","wikidata":"https://www.wikidata.org/wiki/Q3072260","display_name":"Filter (signal processing)","level":2,"score":0.07278013},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2405.20884","pdf_url":"https://arxiv.org/pdf/2405.20884","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2405.20884","pdf_url":"https://arxiv.org/pdf/2405.20884","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W634309863","https://openalex.org/W4375867731","https://openalex.org/W4230611425","https://openalex.org/W3187758724","https://openalex.org/W2731899572","https://openalex.org/W2611989081","https://openalex.org/W2484756741","https://openalex.org/W2389103347","https://openalex.org/W2388504054","https://openalex.org/W2366504813"],"abstract_inverted_index":{"Background:":[0],"Active":[1],"noise":[2,113,211],"cancellation":[3,114,212],"has":[4,51],"been":[5],"a":[6,35,123,175,203],"subject":[7],"of":[8,29,62,100,109],"research":[9,25],"for":[10,71,185,206],"decades.":[11],"Traditional":[12],"techniques,":[13],"like":[14,200],"the":[15,27,44,59,68,90,107,130,180,222],"Fast":[16],"Fourier":[17],"Transform,":[18],"have":[19],"limitations":[20],"in":[21,75,209],"certain":[22],"scenarios.":[23],"This":[24],"explores":[26],"use":[28],"deep":[30],"neural":[31],"networks":[32],"(DNNs)":[33],"as":[34,86],"superior":[36],"alternative.":[37],"Objective:":[38],"The":[39,94,118,190],"study":[40],"aims":[41],"to":[42,105,133],"determine":[43],"effect":[45,108],"sampling":[46,110,147,187],"rate":[47,111],"within":[48,58],"training":[49],"data":[50],"on":[52,83,112,122,194,228],"lightweight,":[53],"efficient":[54],"DNNs":[55],"that":[56],"operate":[57],"processing":[60,181],"constraints":[61],"mobile":[63,207,229],"devices.":[64,230],"Methods:":[65],"We":[66],"chose":[67],"ConvTasNET":[69,80],"network":[70],"its":[72],"proven":[73],"efficiency":[74,115,224],"speech":[76,214],"separation":[77,215],"and":[78,89,103,116,160,216,226],"enhancement.":[79,217],"was":[81,120,177],"trained":[82,144,193],"datasets":[84,95,195],"such":[85],"WHAM!,":[87],"LibriMix,":[88],"MS-2023":[91],"DNS":[92],"Challenge.":[93],"were":[96],"sampled":[97,196],"at":[98,145,197],"rates":[99,148,199],"8kHz,":[101],"16kHz,":[102],"48kHz":[104],"analyze":[106],"effectiveness.":[117],"model":[119],"tested":[121],"core-i7":[124],"Intel":[125],"processor":[126],"from":[127],"2023,":[128],"assessing":[129],"network's":[131],"ability":[132],"produce":[134],"clear":[135],"audio":[136,172],"while":[137],"filtering":[138],"out":[139],"background":[140],"noise.":[141],"Results:":[142],"Models":[143],"higher":[146,186,198],"(48kHz)":[149],"provided":[150],"much":[151],"better":[152],"evaluation":[153],"metrics":[154],"against":[155],"Total":[156],"Harmonic":[157],"Distortion":[158],"(THD)":[159],"Quality":[161],"Prediction":[162],"For":[163],"Generative":[164],"Neural":[165],"Speech":[166],"Codecs":[167],"(WARP-Q)":[168],"values,":[169],"indicating":[170],"improved":[171],"quality.":[173],"However,":[174],"trade-off":[176],"noted":[178],"with":[179],"time":[182],"being":[183],"longer":[184],"rates.":[188],"Conclusions:":[189],"Conv-TasNET":[191],"network,":[192],"48kHz,":[201],"offers":[202],"robust":[204],"solution":[205],"devices":[208],"achieving":[210],"through":[213],"Future":[218],"work":[219],"involves":[220],"optimizing":[221],"model's":[223],"further":[225],"testing":[227]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4399317859","counts_by_year":[],"updated_date":"2025-01-22T05:16:40.311653","created_date":"2024-06-04"}