{"id":"https://openalex.org/W4399317177","doi":"https://doi.org/10.48550/arxiv.2405.20623","title":"Prune at the Clients, Not the Server: Accelerated Sparse Training in\n Federated Learning","display_name":"Prune at the Clients, Not the Server: Accelerated Sparse Training in\n Federated Learning","publication_year":2024,"publication_date":"2024-05-31","ids":{"openalex":"https://openalex.org/W4399317177","doi":"https://doi.org/10.48550/arxiv.2405.20623"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2405.20623","pdf_url":"https://arxiv.org/pdf/2405.20623","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/2405.20623","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5113238844","display_name":"Georg Meinhardt","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Meinhardt, Georg","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100765686","display_name":"Kai Yi","orcid":"https://orcid.org/0000-0003-0415-3584"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yi, Kai","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5024254029","display_name":"Laurent Condat","orcid":"https://orcid.org/0000-0001-7087-1002"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Condat, Laurent","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5036598221","display_name":"Peter Richt\u00e1rik","orcid":"https://orcid.org/0000-0003-4380-5848"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Richt\u00e1rik, Peter","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":83},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10764","display_name":"Privacy-Preserving Technologies in Data","score":0.9917,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10764","display_name":"Privacy-Preserving Technologies in Data","score":0.9917,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10237","display_name":"Cryptography and Data Security","score":0.908,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C2777211547","wikidata":"https://www.wikidata.org/wiki/Q17141490","display_name":"Training (meteorology)","level":2,"score":0.74395794},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.72898823},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.3390042},{"id":"https://openalex.org/C153294291","wikidata":"https://www.wikidata.org/wiki/Q25261","display_name":"Meteorology","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2405.20623","pdf_url":"https://arxiv.org/pdf/2405.20623","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2405.20623","pdf_url":"https://arxiv.org/pdf/2405.20623","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4396701345","https://openalex.org/W4391375266","https://openalex.org/W2810751659","https://openalex.org/W2748952813","https://openalex.org/W258997015","https://openalex.org/W2390279801","https://openalex.org/W2376932109","https://openalex.org/W2358668433","https://openalex.org/W230091440","https://openalex.org/W2233261550"],"abstract_inverted_index":{"In":[0,113],"the":[1,37,41,45,57,61,95,127,137,150,168,173],"recent":[2],"paradigm":[3],"of":[4,22,44,121,176],"Federated":[5],"Learning":[6],"(FL),":[7],"multiple":[8,78],"clients":[9,23,138],"train":[10],"a":[11,53],"shared":[12],"model":[13],"while":[14],"keeping":[15],"their":[16],"local":[17,72,83,90],"data":[18],"private.":[19],"Resource":[20],"constraints":[21],"and":[24,124,130,157,165],"communication":[25,64,98],"costs":[26,65],"pose":[27],"major":[28],"problems":[29],"for":[30,149],"training":[31,48,91,111,123,164],"large":[32],"models":[33],"in":[34,56,66,167,178],"FL.":[35],"On":[36,60],"one":[38,105],"hand,":[39,63],"addressing":[40],"resource":[42],"limitations":[43],"clients,":[46],"sparse":[47,110,122,163],"has":[49,87],"proven":[50],"to":[51,132],"be":[52,69],"powerful":[54],"tool":[55],"centralized":[58],"setting.":[59,170],"other":[62],"FL":[67],"can":[68,92],"addressed":[70],"by":[71,135,154],"training,":[73],"where":[74],"each":[75],"client":[76],"takes":[77],"gradient":[79],"steps":[80],"on":[81],"its":[82],"data.":[84],"Recent":[85],"work":[86,115],"shown":[88],"that":[89,118],"provably":[93,161],"achieve":[94],"optimal":[96],"accelerated":[97,109],"complexity":[99],"[Mishchenko":[100],"et":[101],"al.,":[102],"2022].":[103],"Hence,":[104],"would":[106],"like":[107],"an":[108],"algorithm.":[112],"this":[114],"we":[116],"show":[117],"naive":[119],"integration":[120],"acceleration":[125,166],"at":[126],"server":[128],"fails,":[129],"how":[131],"fix":[133],"it":[134],"letting":[136],"perform":[139],"these":[140],"tasks":[141],"appropriately.":[142],"We":[143,171],"introduce":[144],"Sparse-ProxSkip,":[145],"our":[146],"method":[147],"developed":[148],"nonconvex":[151],"setting,":[152],"inspired":[153],"RandProx":[155],"[Condat":[156],"Richt\\'arik,":[158],"2022],":[159],"which":[160],"combines":[162],"convex":[169],"demonstrate":[172],"good":[174],"performance":[175],"Sparse-ProxSkip":[177],"extensive":[179],"experiments.":[180]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4399317177","counts_by_year":[],"updated_date":"2025-01-20T23:55:47.982768","created_date":"2024-06-04"}