{"id":"https://openalex.org/W4399152096","doi":"https://doi.org/10.48550/arxiv.2405.18328","title":"Warm Start Marginal Likelihood Optimisation for Iterative Gaussian\n Processes","display_name":"Warm Start Marginal Likelihood Optimisation for Iterative Gaussian\n Processes","publication_year":2024,"publication_date":"2024-05-28","ids":{"openalex":"https://openalex.org/W4399152096","doi":"https://doi.org/10.48550/arxiv.2405.18328"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2405.18328","pdf_url":"https://arxiv.org/pdf/2405.18328","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/2405.18328","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5078901361","display_name":"Jihao Andreas Lin","orcid":"https://orcid.org/0000-0003-1969-1801"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Lin, Jihao Andreas","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5083251455","display_name":"Shreyas Padhy","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Padhy, Shreyas","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5052298882","display_name":"Bruno Mlodozeniec","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Mlodozeniec, Bruno","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5102890597","display_name":"Jos\u00e9 Miguel Hern\u00e1ndez-Lobato","orcid":"https://orcid.org/0000-0001-7610-949X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Hern\u00e1ndez-Lobato, Jos\u00e9 Miguel","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":77},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12814","display_name":"Gaussian Processes and Bayesian Inference","score":0.9703,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12814","display_name":"Gaussian Processes and Bayesian Inference","score":0.9703,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/marginal-likelihood","display_name":"Marginal likelihood","score":0.48101884}],"concepts":[{"id":"https://openalex.org/C163716315","wikidata":"https://www.wikidata.org/wiki/Q901177","display_name":"Gaussian","level":2,"score":0.60291034},{"id":"https://openalex.org/C49781872","wikidata":"https://www.wikidata.org/wiki/Q1045555","display_name":"Maximum likelihood","level":2,"score":0.51625776},{"id":"https://openalex.org/C95923904","wikidata":"https://www.wikidata.org/wiki/Q6760420","display_name":"Marginal likelihood","level":3,"score":0.48101884},{"id":"https://openalex.org/C149782125","wikidata":"https://www.wikidata.org/wiki/Q160039","display_name":"Econometrics","level":1,"score":0.46709532},{"id":"https://openalex.org/C28826006","wikidata":"https://www.wikidata.org/wiki/Q33521","display_name":"Applied mathematics","level":1,"score":0.43198735},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.42788762},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.37484097},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.35469455},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.32690066},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.28670862},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.16197303},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2405.18328","pdf_url":"https://arxiv.org/pdf/2405.18328","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2405.18328","pdf_url":"https://arxiv.org/pdf/2405.18328","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W3144869731","https://openalex.org/W3023909498","https://openalex.org/W2609079058","https://openalex.org/W2356093187","https://openalex.org/W2162925157","https://openalex.org/W2149783974","https://openalex.org/W2116302285","https://openalex.org/W2090147078","https://openalex.org/W2057276880","https://openalex.org/W1763060499"],"abstract_inverted_index":{"Gaussian":[0,71],"processes":[1],"are":[2,17,79],"a":[3,45,50,58,62,112,150],"versatile":[4],"probabilistic":[5],"machine":[6],"learning":[7],"model":[8],"whose":[9],"effectiveness":[10,131],"often":[11],"depends":[12],"on":[13,132],"good":[14],"hyperparameters,":[15],"which":[16,32],"typically":[18],"learned":[19],"by":[20,81,98],"maximising":[21],"the":[22,76,108,118,123,139,143],"marginal":[23,40,66],"likelihood.":[24],"In":[25],"this":[26],"work,":[27],"we":[28,116],"consider":[29],"iterative":[30,34,70],"methods,":[31],"use":[33],"linear":[35,90,102],"system":[36,103],"solvers":[37,104],"to":[38,44,95,149],"approximate":[39],"likelihood":[41,67],"gradients":[42],"up":[43,148],"specified":[46],"numerical":[47],"precision,":[48],"allowing":[49],"trade-off":[51],"between":[52],"compute":[53],"time":[54],"and":[55,73,121,128],"accuracy":[56],"of":[57,65,85,89,101,125],"solution.":[59],"We":[60,92],"introduce":[61],"three-level":[63],"hierarchy":[64],"optimisation":[68],"for":[69],"processes,":[72],"identify":[74],"that":[75],"computational":[77],"costs":[78],"dominated":[80],"solving":[82],"sequential":[83],"batches":[84],"large":[86],"positive-definite":[87],"systems":[88],"equations.":[91],"then":[93],"propose":[94],"amortise":[96],"computations":[97],"reusing":[99],"solutions":[100],"as":[105,142],"initialisations":[106],"in":[107],"next":[109],"step,":[110],"providing":[111,147],"$\\textit{warm":[113],"start}$.":[114],"Finally,":[115],"discuss":[117],"necessary":[119],"conditions":[120],"quantify":[122],"consequences":[124],"warm":[126,136],"starts":[127,137],"demonstrate":[129],"their":[130],"regression":[133],"tasks,":[134],"where":[135],"achieve":[138],"same":[140],"results":[141],"conventional":[144],"procedure":[145],"while":[146],"$16":[151],"\\times$":[152],"average":[153],"speed-up":[154],"among":[155],"datasets.":[156]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4399152096","counts_by_year":[],"updated_date":"2025-04-22T18:24:38.412153","created_date":"2024-05-30"}