{"id":"https://openalex.org/W4399151805","doi":"https://doi.org/10.48550/arxiv.2405.17998","title":"Source Echo Chamber: Exploring the Escalation of Source Bias in User,\n Data, and Recommender System Feedback Loop","display_name":"Source Echo Chamber: Exploring the Escalation of Source Bias in User,\n Data, and Recommender System Feedback Loop","publication_year":2024,"publication_date":"2024-05-28","ids":{"openalex":"https://openalex.org/W4399151805","doi":"https://doi.org/10.48550/arxiv.2405.17998"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2405.17998","pdf_url":"https://arxiv.org/pdf/2405.17998","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/2405.17998","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5102010069","display_name":"Yuqi Zhou","orcid":"https://orcid.org/0009-0008-2453-9138"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhou, Yuqi","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5075518954","display_name":"Sunhao Dai","orcid":"https://orcid.org/0009-0002-7549-0860"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Dai, Sunhao","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5102614695","display_name":"Liang Pang","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Pang, Liang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100367403","display_name":"Gang Wang","orcid":"https://orcid.org/0000-0002-7266-2412"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wang, Gang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5021124418","display_name":"Zhenhua Dong","orcid":"https://orcid.org/0000-0002-2231-4663"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Dong, Zhenhua","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101368894","display_name":"Jun Xu","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Xu, Jun","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5025631695","display_name":"Ji-Rong Wen","orcid":"https://orcid.org/0000-0002-9777-9676"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wen, Ji-Rong","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":78},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T13083","display_name":"Advanced Text Analysis Techniques","score":0.778,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T13083","display_name":"Advanced Text Analysis Techniques","score":0.778,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12761","display_name":"Data Stream Mining Techniques","score":0.7373,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11326","display_name":"Stock Market Forecasting Methods","score":0.664,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/echo","display_name":"Echo (communications protocol)","score":0.86533344},{"id":"https://openalex.org/keywords/feedback-loop","display_name":"Feedback loop","score":0.6626095}],"concepts":[{"id":"https://openalex.org/C2779426996","wikidata":"https://www.wikidata.org/wiki/Q18389128","display_name":"Echo (communications protocol)","level":2,"score":0.86533344},{"id":"https://openalex.org/C557471498","wikidata":"https://www.wikidata.org/wiki/Q554950","display_name":"Recommender system","level":2,"score":0.66523874},{"id":"https://openalex.org/C186886427","wikidata":"https://www.wikidata.org/wiki/Q5441213","display_name":"Feedback loop","level":2,"score":0.6626095},{"id":"https://openalex.org/C184670325","wikidata":"https://www.wikidata.org/wiki/Q512604","display_name":"Loop (graph theory)","level":2,"score":0.6226527},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5525515},{"id":"https://openalex.org/C79403827","wikidata":"https://www.wikidata.org/wiki/Q3988","display_name":"Real-time computing","level":1,"score":0.3433626},{"id":"https://openalex.org/C136764020","wikidata":"https://www.wikidata.org/wiki/Q466","display_name":"World Wide Web","level":1,"score":0.31002593},{"id":"https://openalex.org/C38652104","wikidata":"https://www.wikidata.org/wiki/Q3510521","display_name":"Computer security","level":1,"score":0.17858821},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.12249726},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.07484883}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2405.17998","pdf_url":"https://arxiv.org/pdf/2405.17998","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2405.17998","pdf_url":"https://arxiv.org/pdf/2405.17998","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4311118063","https://openalex.org/W4301401229","https://openalex.org/W4213045373","https://openalex.org/W3089214483","https://openalex.org/W3088120614","https://openalex.org/W3084132679","https://openalex.org/W2381125525","https://openalex.org/W2375499102","https://openalex.org/W2024563306","https://openalex.org/W2007705401"],"abstract_inverted_index":{"Recently,":[0],"researchers":[1],"have":[2],"uncovered":[3],"that":[4,217],"neural":[5,87],"retrieval":[6],"models":[7,89],"prefer":[8],"AI-generated":[9],"content":[10,132],"(AIGC),":[11],"called":[12],"source":[13,34,83,103,165,175],"bias.":[14,35],"Compared":[15],"to":[16,33,72,79,240],"active":[17],"search":[18],"behavior,":[19],"recommendation":[20,40,75,88,131],"represents":[21],"another":[22],"important":[23],"means":[24],"of":[25,102,108,118,126,164,232],"information":[26,191],"acquisition,":[27],"where":[28],"users":[29],"are":[30],"more":[31],"prone":[32],"Furthermore,":[36],"delving":[37],"into":[38,105,129],"the":[39,47,54,60,63,69,74,82,86,100,106,119,124,130,162,179,208,230,233,242],"scenario,":[41],"as":[42,194],"AIGC":[43,127,142],"becomes":[44],"integrated":[45],"within":[46,90],"feedback":[48,91,120,180,209,243],"loop":[49,92],"involving":[50],"users,":[51],"data,":[52],"and":[53,67,78,141,147,167,203,224],"recommender":[55,109,187],"system,":[56],"it":[57],"progressively":[58],"contaminates":[59],"candidate":[61],"items,":[62],"user":[64],"interaction":[65],"history,":[66],"ultimately,":[68],"data":[70],"used":[71],"train":[73],"models.":[76],"How":[77],"what":[80],"extent":[81],"bias":[84,104,166,176,202],"affects":[85],"remains":[93],"unknown.":[94],"In":[95],"this":[96,201],"study,":[97],"we":[98,160,211],"extend":[99],"investigation":[101],"realm":[107],"systems,":[110],"specifically":[111],"examining":[112],"its":[113,205,238],"impact":[114],"across":[115,154],"different":[116],"phases":[117],"loop.":[121,181,244],"We":[122],"conceptualize":[123],"progression":[125],"integration":[128],"ecosystem":[133,188],"in":[134,207],"three":[135,155],"distinct":[136],"phases-HGC":[137],"dominate,":[138],"HGC-AIGC":[139],"coexist,":[140],"dominance-each":[143],"representing":[144],"past,":[145],"present,":[146],"future":[148],"states,":[149],"respectively.":[150],"Through":[151],"extensive":[152],"experiments":[153],"datasets":[156],"from":[157],"diverse":[158],"domains,":[159],"demonstrate":[161],"prevalence":[163],"reveal":[168],"a":[169,186,213],"potential":[170,239],"digital":[171],"echo":[172],"chamber":[173],"with":[174,189],"amplification":[177],"throughout":[178],"This":[182],"trend":[183],"risks":[184],"creating":[185],"limited":[190],"source,":[192],"such":[193],"AIGC,":[195],"being":[196],"disproportionately":[197],"recommended.":[198],"To":[199],"counteract":[200],"prevent":[204],"escalation":[206],"loop,":[210],"introduce":[212],"black-box":[214],"debiasing":[215,235],"method":[216],"maintains":[218],"model":[219],"impartiality":[220],"towards":[221],"both":[222],"HGC":[223],"AIGC.":[225],"Our":[226],"experimental":[227],"results":[228],"validate":[229],"effectiveness":[231],"proposed":[234],"method,":[236],"confirming":[237],"disrupt":[241]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4399151805","counts_by_year":[],"updated_date":"2025-04-04T00:59:30.617394","created_date":"2024-05-30"}