{"id":"https://openalex.org/W4399115274","doi":"https://doi.org/10.48550/arxiv.2405.16077","title":"Finite-Time Analysis for Conflict-Avoidant Multi-Task Reinforcement\n Learning","display_name":"Finite-Time Analysis for Conflict-Avoidant Multi-Task Reinforcement\n Learning","publication_year":2024,"publication_date":"2024-05-25","ids":{"openalex":"https://openalex.org/W4399115274","doi":"https://doi.org/10.48550/arxiv.2405.16077"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2405.16077","pdf_url":"http://arxiv.org/pdf/2405.16077","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2405.16077","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100705261","display_name":"Yudan Wang","orcid":"https://orcid.org/0000-0001-7421-4317"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wang, Yudan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5009073025","display_name":"Peiyao Xiao","orcid":"https://orcid.org/0000-0001-6879-7966"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Xiao, Peiyao","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5029701939","display_name":"Hao Ban","orcid":"https://orcid.org/0000-0003-0724-2857"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ban, Hao","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5071973105","display_name":"Kaiyi Ji","orcid":"https://orcid.org/0000-0002-9533-0058"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ji, Kaiyi","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5012545205","display_name":"Shaofeng Zou","orcid":"https://orcid.org/0000-0002-2821-6941"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zou, Shaofeng","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":84},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10462","display_name":"Reinforcement Learning in Robotics","score":0.8538,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10462","display_name":"Reinforcement Learning in Robotics","score":0.8538,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C97541855","wikidata":"https://www.wikidata.org/wiki/Q830687","display_name":"Reinforcement learning","level":2,"score":0.6884285},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.6567703},{"id":"https://openalex.org/C15744967","wikidata":"https://www.wikidata.org/wiki/Q9418","display_name":"Psychology","level":0,"score":0.5905675},{"id":"https://openalex.org/C67203356","wikidata":"https://www.wikidata.org/wiki/Q1321905","display_name":"Reinforcement","level":2,"score":0.5306895},{"id":"https://openalex.org/C180747234","wikidata":"https://www.wikidata.org/wiki/Q23373","display_name":"Cognitive psychology","level":1,"score":0.35404497},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.35127783},{"id":"https://openalex.org/C77805123","wikidata":"https://www.wikidata.org/wiki/Q161272","display_name":"Social psychology","level":1,"score":0.29503474},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.28759974},{"id":"https://openalex.org/C187736073","wikidata":"https://www.wikidata.org/wiki/Q2920921","display_name":"Management","level":1,"score":0.06558758},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2405.16077","pdf_url":"http://arxiv.org/pdf/2405.16077","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2405.16077","pdf_url":"http://arxiv.org/pdf/2405.16077","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4391375266","https://openalex.org/W4310083477","https://openalex.org/W4211075255","https://openalex.org/W2920061524","https://openalex.org/W2748952813","https://openalex.org/W2328553770","https://openalex.org/W2107890255","https://openalex.org/W2106552856","https://openalex.org/W2038908348","https://openalex.org/W1977959518"],"abstract_inverted_index":{"Multi-task":[0],"reinforcement":[1],"learning":[2],"(MTRL)":[3],"has":[4],"shown":[5],"great":[6],"promise":[7],"in":[8,60,90],"many":[9],"real-world":[10],"applications.":[11],"Existing":[12],"MTRL":[13,197],"algorithms":[14,194],"often":[15,40],"aim":[16],"to":[17,96,155,176],"learn":[18],"a":[19,28,61,72,98,115,122,136,146,180],"policy":[20,140],"that":[21,49,103,132,170],"optimizes":[22],"individual":[23],"objective":[24],"functions":[25],"simultaneously":[26],"with":[27,52,179,199],"given":[29],"prior":[30],"preference":[31],"(or":[32],"weights)":[33],"on":[34,64,186],"different":[35],"tasks.":[36,66],"However,":[37],"these":[38],"methods":[39,198],"suffer":[41],"from":[42],"the":[43,50,56,105,153,156,162,173,189],"issue":[44],"of":[45,83,192],"\\textit{gradient":[46],"conflict}":[47],"such":[48],"tasks":[51],"larger":[53],"gradients":[54],"dominate":[55],"update":[57,101],"direction,":[58],"resulting":[59],"performance":[62,191],"degeneration":[63],"other":[65],"In":[67],"this":[68],"paper,":[69],"we":[70],"develop":[71],"novel":[73],"dynamic":[74],"weighting":[75],"multi-task":[76],"actor-critic":[77],"algorithm":[78],"(MTAC)":[79],"under":[80],"two":[81],"options":[82],"sub-procedures":[84],"named":[85],"as":[86,152],"CA":[87,149,157,182],"and":[88,111],"FC":[89],"task":[91],"weight":[92],"updates.":[93],"MTAC-CA":[94,133],"aims":[95],"find":[97,135],"conflict-avoidant":[99],"(CA)":[100],"direction":[102],"maximizes":[104],"minimum":[106],"value":[107],"improvement":[108],"among":[109],"tasks,":[110],"MTAC-FC":[112,171],"targets":[113],"at":[114],"much":[116],"faster":[117],"convergence":[118,125],"rate.":[119],"We":[120,130],"provide":[121],"comprehensive":[123],"finite-time":[124],"analysis":[126,167],"for":[127],"both":[128],"algorithms.":[129],"show":[131],"can":[134],"$\\epsilon+\\epsilon_{\\text{app}}$-accurate":[137],"Pareto":[138],"stationary":[139],"using":[141],"$\\mathcal{O}({\\epsilon^{-5}})$":[142],"samples,":[143],"while":[144],"ensuring":[145],"small":[147],"$\\epsilon+\\sqrt{\\epsilon_{\\text{app}}}$-level":[148],"distance":[150,154],"(defined":[151],"direction),":[158],"where":[159],"$\\epsilon_{\\text{app}}$":[160],"is":[161],"function":[163],"approximation":[164],"error.":[165],"The":[166],"also":[168],"shows":[169],"improves":[172],"sample":[174],"complexity":[175],"$\\mathcal{O}(\\epsilon^{-3})$,":[177],"but":[178],"constant-level":[181],"distance.":[183],"Our":[184],"experiments":[185],"MT10":[187],"demonstrate":[188],"improved":[190],"our":[193],"over":[195],"existing":[196],"fixed":[200],"preference.":[201]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4399115274","counts_by_year":[],"updated_date":"2024-12-10T01:11:35.319514","created_date":"2024-05-29"}