{"id":"https://openalex.org/W4399062336","doi":"https://doi.org/10.48550/arxiv.2405.15423","title":"Lost in the Averages: A New Specific Setup to Evaluate Membership\n Inference Attacks Against Machine Learning Models","display_name":"Lost in the Averages: A New Specific Setup to Evaluate Membership\n Inference Attacks Against Machine Learning Models","publication_year":2024,"publication_date":"2024-05-24","ids":{"openalex":"https://openalex.org/W4399062336","doi":"https://doi.org/10.48550/arxiv.2405.15423"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2405.15423","pdf_url":"https://arxiv.org/pdf/2405.15423","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/2405.15423","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5060837175","display_name":"Florent Gu\u00e9pin","orcid":"https://orcid.org/0009-0008-5098-0963"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Gu\u00e9pin, Florent","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5061305269","display_name":"Nata\u0161a Kr\u010do","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Kr\u010do, Nata\u0161a","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5068554561","display_name":"Matthieu Meeus","orcid":"https://orcid.org/0009-0008-7353-4042"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Meeus, Matthieu","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5078253058","display_name":"Yves-Alexandre de Montjoye","orcid":"https://orcid.org/0000-0002-2559-5616"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"de Montjoye, Yves-Alexandre","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":84},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":0.9685,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":0.9685,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.6763011},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5516742},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.5432471},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5071311},{"id":"https://openalex.org/C149782125","wikidata":"https://www.wikidata.org/wiki/Q160039","display_name":"Econometrics","level":1,"score":0.32946545},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.23305643}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2405.15423","pdf_url":"https://arxiv.org/pdf/2405.15423","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2405.15423","pdf_url":"https://arxiv.org/pdf/2405.15423","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4394896187","https://openalex.org/W4386462264","https://openalex.org/W4364306694","https://openalex.org/W4312192474","https://openalex.org/W4306674287","https://openalex.org/W4283697347","https://openalex.org/W3170094116","https://openalex.org/W3107602296","https://openalex.org/W3046775127","https://openalex.org/W2961085424"],"abstract_inverted_index":{"Membership":[0],"Inference":[1],"Attacks":[2],"(MIAs)":[3],"are":[4,31,55,112],"widely":[5],"used":[6,132],"to":[7,17,35,93,133,139,169,202,235,266,285,301],"evaluate":[8,134,171],"the":[9,23,27,38,78,161,172,176,193,198,221,225,232,246,263,280,290,298],"propensity":[10],"of":[11,46,80,90,129,164,178,231,242,249],"a":[12,43,58,87,100,147,179,183,257],"machine":[13],"learning":[14],"(ML)":[15],"model":[16,28,180],"memorize":[18],"an":[19,116,229,254],"individual":[20,141],"record":[21],"and":[22,73,289],"privacy":[24,142],"risk":[25,102,143,173,194,222,281,287,291],"releasing":[26],"poses.":[29],"MIAs":[30,135,153],"commonly":[32],"evaluated":[33,65,76],"similarly":[34],"ML":[36,91,155],"models:":[37],"MIA":[39,63,255,276],"is":[40,64,74,228,278],"performed":[41],"on":[42,49,105,182],"test":[44,71],"set":[45],"models":[47],"trained":[48,181],"datasets":[50,68,283],"unseen":[51],"during":[52],"training,":[53],"which":[54],"sampled":[56,237],"from":[57,82],"larger":[59],"pool,":[60],"$D_{eval}$.":[61,83],"The":[62,127],"across":[66,77,282],"all":[67],"in":[69,118,125,224],"this":[70,85],"set,":[72],"thus":[75,137],"distribution":[79],"samples":[81],"While":[84],"was":[86],"natural":[88],"extension":[89],"evaluation":[92,150,277],"MIAs,":[94,188],"recent":[95],"work":[96],"has":[97],"shown":[98],"that":[99,192,220,274],"record's":[101],"heavily":[103],"depends":[104],"its":[106],"specific":[107,149,184,234],"dataset.":[108,185],"For":[109],"example,":[110],"outliers":[111],"particularly":[113],"vulnerable,":[114],"yet":[115],"outlier":[117],"one":[119,124],"dataset":[120,265,300],"may":[121,136],"not":[122],"be":[123,302],"another.":[126],"sources":[128],"randomness":[130],"currently":[131],"lead":[138,201],"inaccurate":[140,286],"estimates.":[144],"We":[145,210],"propose":[146],"new,":[148],"setup":[151,200,227],"for":[152],"against":[154],"models,":[156],"using":[157],"weight":[158,243],"initialization":[159,244],"as":[160,207,245],"sole":[162],"source":[163,248],"randomness.":[165,250],"This":[166],"allows":[167],"us":[168],"accurately":[170],"associated":[174],"with":[175,216,256],"release":[177],"Using":[186],"SOTA":[187],"we":[189,252],"empirically":[190],"show":[191,273],"estimates":[195],"given":[196],"by":[197,293],"current":[199,226,275],"many":[203],"records":[204],"being":[205],"misclassified":[206],"low":[208],"risk.":[209],"derive":[211],"theoretical":[212],"results":[213,272],"which,":[214],"combined":[215],"empirical":[217],"evidence,":[218],"suggest":[219],"calculated":[223],"average":[230],"risks":[233],"each":[236],"dataset,":[238],"validating":[239],"our":[240,271],"use":[241],"only":[247],"Finally,":[251],"consider":[253],"stronger":[258],"adversary":[259],"leveraging":[260,295],"information":[261,296],"about":[262,297],"target":[264,299],"infer":[267],"membership.":[268],"Taken":[269],"together,":[270],"averaging":[279],"leading":[284],"estimates,":[288],"posed":[292],"attacks":[294],"potentially":[303],"underestimated.":[304]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4399062336","counts_by_year":[],"updated_date":"2024-12-10T01:11:01.169551","created_date":"2024-05-28"}