{"id":"https://openalex.org/W4396913653","doi":"https://doi.org/10.48550/arxiv.2405.07481","title":"Text Grouping Adapter: Adapting Pre-trained Text Detector for Layout\n Analysis","display_name":"Text Grouping Adapter: Adapting Pre-trained Text Detector for Layout\n Analysis","publication_year":2024,"publication_date":"2024-05-13","ids":{"openalex":"https://openalex.org/W4396913653","doi":"https://doi.org/10.48550/arxiv.2405.07481"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2405.07481","pdf_url":"http://arxiv.org/pdf/2405.07481","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2405.07481","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5109787896","display_name":"Tianci Bi","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Bi, Tianci","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100357469","display_name":"Xiaoyi Zhang","orcid":"https://orcid.org/0000-0002-7185-0470"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhang, Xiaoyi","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101734731","display_name":"Zhizheng Zhang","orcid":"https://orcid.org/0000-0001-9851-6184"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhang, Zhizheng","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101630302","display_name":"Wenxuan Xie","orcid":"https://orcid.org/0009-0005-1979-1564"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Xie, Wenxuan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5051469345","display_name":"Cuiling Lan","orcid":"https://orcid.org/0000-0001-9145-9957"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Lan, Cuiling","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5111657456","display_name":"Yan Lu","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Lu, Yan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5047405956","display_name":"Nanning Zheng","orcid":"https://orcid.org/0000-0003-1608-8257"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zheng, Nanning","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":84},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11550","display_name":"Text and Document Classification Technologies","score":0.8492,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11550","display_name":"Text and Document Classification Technologies","score":0.8492,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10601","display_name":"Handwritten Text Recognition Techniques","score":0.8031,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12016","display_name":"Web Data Mining and Analysis","score":0.7741,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/adapter","display_name":"Adapter (computing)","score":0.8049036}],"concepts":[{"id":"https://openalex.org/C177284502","wikidata":"https://www.wikidata.org/wiki/Q1005390","display_name":"Adapter (computing)","level":2,"score":0.8049036},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6340473},{"id":"https://openalex.org/C94915269","wikidata":"https://www.wikidata.org/wiki/Q1834857","display_name":"Detector","level":2,"score":0.51227397},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.4800683},{"id":"https://openalex.org/C23123220","wikidata":"https://www.wikidata.org/wiki/Q816826","display_name":"Information retrieval","level":1,"score":0.3950968},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.37032703},{"id":"https://openalex.org/C9390403","wikidata":"https://www.wikidata.org/wiki/Q3966","display_name":"Computer hardware","level":1,"score":0.21537137},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.12978783}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2405.07481","pdf_url":"http://arxiv.org/pdf/2405.07481","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2405.07481","pdf_url":"http://arxiv.org/pdf/2405.07481","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4385571108","https://openalex.org/W4306381730","https://openalex.org/W4229060448","https://openalex.org/W3204019825","https://openalex.org/W3184035966","https://openalex.org/W3044188621","https://openalex.org/W2981692913","https://openalex.org/W2485605994","https://openalex.org/W2160602540","https://openalex.org/W2133028525"],"abstract_inverted_index":{"Significant":[0],"progress":[1],"has":[2,30],"been":[3],"made":[4,62],"in":[5],"scene":[6,17],"text":[7,18,26,38,69,95,107,124,130,140,155,159,181,184,195],"detection":[8,39,74,196],"models":[9],"since":[10],"the":[11,66,90,111,201],"rise":[12],"of":[13,57,65,92,203],"deep":[14],"learning,":[15],"but":[16],"layout":[19,99,149,189,211],"analysis,":[20,100,150],"which":[21],"aims":[22],"to":[23,97,103,119,138,153],"group":[24,156],"detected":[25,129],"instances":[27],"as":[28,135],"paragraphs,":[29],"not":[31,60],"kept":[32],"pace.":[33],"Previous":[34],"works":[35],"either":[36],"treated":[37],"and":[40,71,132,183],"grouping":[41],"using":[42,52],"separate":[43],"models,":[44,174],"or":[45,113],"train":[46],"a":[47,53,85,105],"model":[48],"from":[49,158,198],"scratch":[50],"while":[51],"unified":[54],"one.":[55],"All":[56],"them":[58],"have":[59],"yet":[61],"full":[63,204],"use":[64],"already":[67],"well-trained":[68,106],"detectors":[70,96,182],"easily":[72],"obtainable":[73],"datasets.":[75],"In":[76,200],"this":[77],"paper,":[78],"we":[79,151,207],"present":[80],"Text":[81],"Grouping":[82],"Adapter":[83],"(TGA),":[84],"module":[86],"that":[87],"can":[88,186,208],"enable":[89],"utilization":[91],"various":[93,123,179],"pre-trained":[94,173,180],"learn":[98],"allowing":[101],"us":[102],"adopt":[104],"detector":[108,125],"right":[109],"off":[110],"shelf":[112],"just":[114],"fine-tune":[115],"it":[116],"efficiently.":[117],"Designed":[118],"be":[120],"compatible":[121],"with":[122,171],"architectures,":[126],"TGA":[127,177],"takes":[128],"regions":[131],"image":[133],"features":[134,161],"universal":[136],"inputs":[137],"assemble":[139],"instance":[141,160],"features.":[142],"To":[143],"capture":[144],"broader":[145],"contextual":[146],"information":[147],"for":[148],"propose":[152],"predict":[154],"masks":[157],"by":[162],"one-to-many":[163],"assignment.":[164],"Our":[165],"comprehensive":[166],"experiments":[167],"demonstrate":[168],"that,":[169],"even":[170],"frozen":[172],"incorporating":[175],"our":[176],"into":[178],"spotters":[185],"achieve":[187],"superior":[188],"analysis":[190,212],"performance,":[191],"simultaneously":[192],"inheriting":[193],"generalized":[194],"ability":[197],"pre-training.":[199],"case":[202],"parameter":[205],"fine-tuning,":[206],"further":[209],"improve":[210],"performance.":[213]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4396913653","counts_by_year":[],"updated_date":"2024-12-22T10:00:02.232500","created_date":"2024-05-15"}