{"id":"https://openalex.org/W4396787170","doi":"https://doi.org/10.48550/arxiv.2405.03355","title":"On the Theory of Cross-Modality Distillation with Contrastive Learning","display_name":"On the Theory of Cross-Modality Distillation with Contrastive Learning","publication_year":2024,"publication_date":"2024-05-06","ids":{"openalex":"https://openalex.org/W4396787170","doi":"https://doi.org/10.48550/arxiv.2405.03355"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2405.03355","pdf_url":"https://arxiv.org/pdf/2405.03355","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/2405.03355","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5064702771","display_name":"Hangyu Lin","orcid":"https://orcid.org/0000-0002-0538-7692"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Lin, Hangyu","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100322148","display_name":"Chen Liu","orcid":"https://orcid.org/0000-0002-2229-9790"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Liu, Chen","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101908952","display_name":"Chengming Xu","orcid":"https://orcid.org/0000-0003-3891-2227"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Xu, Chengming","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5021178333","display_name":"Zhengqi Gao","orcid":"https://orcid.org/0000-0002-1515-4198"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Gao, Zhengqi","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5084959430","display_name":"Yanwei Fu","orcid":"https://orcid.org/0000-0002-6595-6893"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Fu, Yanwei","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5102117543","display_name":"Yuan Yao","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yao, Yuan","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":84},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.8246,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.8246,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10876","display_name":"Fault Detection and Control Systems","score":0.7291,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10100","display_name":"Metaheuristic Optimization Algorithms Research","score":0.6901,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/modality","display_name":"Modality (human\u2013computer interaction)","score":0.71190953},{"id":"https://openalex.org/keywords/contrastive-analysis","display_name":"Contrastive analysis","score":0.50648916}],"concepts":[{"id":"https://openalex.org/C2780226545","wikidata":"https://www.wikidata.org/wiki/Q6888030","display_name":"Modality (human\u2013computer interaction)","level":2,"score":0.71190953},{"id":"https://openalex.org/C204030448","wikidata":"https://www.wikidata.org/wiki/Q101017","display_name":"Distillation","level":2,"score":0.5558934},{"id":"https://openalex.org/C2777629044","wikidata":"https://www.wikidata.org/wiki/Q614959","display_name":"Contrastive analysis","level":2,"score":0.50648916},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.4664319},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.45312312},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.43471533},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.33327752},{"id":"https://openalex.org/C15744967","wikidata":"https://www.wikidata.org/wiki/Q9418","display_name":"Psychology","level":0,"score":0.3301375},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.2776839},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.2242538},{"id":"https://openalex.org/C43617362","wikidata":"https://www.wikidata.org/wiki/Q170050","display_name":"Chromatography","level":1,"score":0.21886185},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.16908982}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2405.03355","pdf_url":"https://arxiv.org/pdf/2405.03355","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2405.03355","pdf_url":"https://arxiv.org/pdf/2405.03355","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W73545470","https://openalex.org/W3144423903","https://openalex.org/W2793967660","https://openalex.org/W2530972254","https://openalex.org/W2385859805","https://openalex.org/W2377397762","https://openalex.org/W2374430585","https://openalex.org/W2374013449","https://openalex.org/W2368997734","https://openalex.org/W2364381299"],"abstract_inverted_index":{"Cross-modality":[0],"distillation":[1,137,153],"arises":[2],"as":[3,14],"an":[4],"important":[5],"topic":[6],"for":[7,27],"data":[8,35,51],"modalities":[9,173,212,216],"containing":[10],"limited":[11],"knowledge":[12,55],"such":[13],"depth":[15,220],"maps":[16],"and":[17,29,64,93,122,147,171,213,222,224,228],"high-quality":[18],"sketches.":[19],"Such":[20],"techniques":[21],"are":[22],"of":[23,84,86,125,134,154,208,217,226],"great":[24],"importance,":[25],"especially":[26],"memory":[28],"privacy-restricted":[30],"scenarios":[31],"where":[32],"labeled":[33],"training":[34],"is":[36,187],"generally":[37],"unavailable.":[38],"To":[39,115],"solve":[40],"the":[41,54,62,74,81,89,94,108,117,120,167,176,183,191],"problem,":[42],"existing":[43,202],"label-free":[44],"methods":[45],"leverage":[46],"a":[47,131,151,160,206],"few":[48],"pairwise":[49],"unlabeled":[50],"to":[52,72],"distill":[53],"by":[56,190,205],"aligning":[57],"features":[58,83],"or":[59,77],"statistics":[60],"between":[61,80,119,169],"source":[63,90,170],"target":[65,95,172,184],"modalities.":[66,98],"For":[67],"instance,":[68],"one":[69],"typically":[70],"aims":[71],"minimize":[73],"L2":[75],"distance":[76,168],"contrastive":[78,136,141],"loss":[79],"learned":[82],"pairs":[85],"samples":[87],"in":[88,102],"(e.g.":[91,96],"image)":[92],"sketch)":[97],"However,":[99],"most":[100],"algorithms":[101,203],"this":[103],"domain":[104],"only":[105],"focus":[106],"on":[107,179],"experimental":[109,195],"results":[110,196],"but":[111],"lack":[112],"theoretical":[113],"insight.":[114],"bridge":[116],"gap":[118],"theory":[121],"practical":[123],"method":[124],"cross-modality":[126,135],"distillation,":[127],"we":[128,158],"first":[129],"formulate":[130],"general":[132],"framework":[133],"(CMCD),":[138],"built":[139],"upon":[140],"learning":[142],"that":[143,164,166,198],"leverages":[144],"both":[145],"positive":[146],"negative":[148],"correspondence,":[149],"towards":[150],"better":[152],"generalizable":[155],"features.":[156],"Furthermore,":[157],"establish":[159],"thorough":[161],"convergence":[162],"analysis":[163],"reveals":[165],"significantly":[174],"impacts":[175],"test":[177],"error":[178],"downstream":[180],"tasks":[181,225],"within":[182],"modality":[185],"which":[186],"also":[188],"validated":[189],"empirical":[192],"results.":[193],"Extensive":[194],"show":[197],"our":[199],"algorithm":[200],"outperforms":[201],"consistently":[204],"margin":[207],"2-3\\%":[209],"across":[210],"diverse":[211],"tasks,":[214],"covering":[215],"image,":[218],"sketch,":[219],"map,":[221],"audio":[223],"recognition":[227],"segmentation.":[229]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4396787170","counts_by_year":[],"updated_date":"2024-12-06T23:41:48.864540","created_date":"2024-05-10"}