{"id":"https://openalex.org/W4396651307","doi":"https://doi.org/10.48550/arxiv.2405.01494","title":"Navigating Heterogeneity and Privacy in One-Shot Federated Learning with\n Diffusion Models","display_name":"Navigating Heterogeneity and Privacy in One-Shot Federated Learning with\n Diffusion Models","publication_year":2024,"publication_date":"2024-05-02","ids":{"openalex":"https://openalex.org/W4396651307","doi":"https://doi.org/10.48550/arxiv.2405.01494"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2405.01494","pdf_url":"https://arxiv.org/pdf/2405.01494","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/2405.01494","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5096171611","display_name":"Matias Mendieta","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Mendieta, Matias","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5062806218","display_name":"Guangyu Sun","orcid":"https://orcid.org/0000-0002-3598-3807"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Sun, Guangyu","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5041446763","display_name":"Chen Chen","orcid":"https://orcid.org/0000-0003-3908-6545"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Chen, Chen","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.908383,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":78,"max":89},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10764","display_name":"Privacy-Preserving Technologies in Data","score":0.997,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10764","display_name":"Privacy-Preserving Technologies in Data","score":0.997,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11612","display_name":"Stochastic Gradient Optimization Techniques","score":0.9791,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10964","display_name":"Wireless Communication Security Techniques","score":0.912,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C2778344882","wikidata":"https://www.wikidata.org/wiki/Q278938","display_name":"Shot (pellet)","level":2,"score":0.62772125},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.62160057},{"id":"https://openalex.org/C69357855","wikidata":"https://www.wikidata.org/wiki/Q163214","display_name":"Diffusion","level":2,"score":0.57836354},{"id":"https://openalex.org/C108827166","wikidata":"https://www.wikidata.org/wiki/Q175975","display_name":"Internet privacy","level":1,"score":0.3765486},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.080356985},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C178790620","wikidata":"https://www.wikidata.org/wiki/Q11351","display_name":"Organic chemistry","level":1,"score":0.0},{"id":"https://openalex.org/C97355855","wikidata":"https://www.wikidata.org/wiki/Q11473","display_name":"Thermodynamics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2405.01494","pdf_url":"https://arxiv.org/pdf/2405.01494","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2405.01494","pdf_url":"https://arxiv.org/pdf/2405.01494","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4391375266","https://openalex.org/W4214877189","https://openalex.org/W2980279061","https://openalex.org/W2773965352","https://openalex.org/W2748952813","https://openalex.org/W2381179799","https://openalex.org/W2366718574","https://openalex.org/W2359774528","https://openalex.org/W2334685461","https://openalex.org/W2074502265"],"abstract_inverted_index":{"Federated":[0],"learning":[1,28],"(FL)":[2],"enables":[3],"multiple":[4],"clients":[5],"to":[6,90,100],"train":[7],"models":[8,63],"collectively":[9],"while":[10],"preserving":[11],"data":[12,24,48,72,122],"privacy.":[13],"However,":[14],"FL":[15,76,93],"faces":[16],"challenges":[17],"in":[18,64,70],"terms":[19],"of":[20,61,83,120],"communication":[21,36],"cost":[22],"and":[23,40,74],"heterogeneity.":[25],"One-shot":[26],"federated":[27],"has":[29],"emerged":[30],"as":[31],"a":[32,51,110],"solution":[33],"by":[34],"reducing":[35],"rounds,":[37],"improving":[38,75],"efficiency,":[39],"providing":[41],"better":[42],"security":[43],"against":[44],"eavesdropping":[45],"attacks.":[46],"Nevertheless,":[47],"heterogeneity":[49,73],"remains":[50],"significant":[52],"challenge,":[53],"impacting":[54],"performance.":[55,77],"This":[56],"work":[57],"explores":[58],"the":[59,81,118],"effectiveness":[60,119],"diffusion":[62,85],"one-shot":[65,92],"FL,":[66],"demonstrating":[67],"their":[68],"applicability":[69],"addressing":[71],"Additionally,":[78],"we":[79,108],"investigate":[80],"utility":[82],"our":[84],"model":[86,125],"approach,":[87],"FedDiff,":[88],"compared":[89],"other":[91],"methods":[94],"under":[95,105],"differential":[96],"privacy":[97],"(DP).":[98],"Furthermore,":[99],"improve":[101],"generated":[102,121],"sample":[103],"quality":[104],"DP":[106],"settings,":[107],"propose":[109],"pragmatic":[111],"Fourier":[112],"Magnitude":[113],"Filtering":[114],"(FMF)":[115],"method,":[116],"enhancing":[117],"for":[123],"global":[124],"training.":[126]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4396651307","counts_by_year":[{"year":2025,"cited_by_count":1}],"updated_date":"2025-04-02T16:46:05.509458","created_date":"2024-05-05"}