{"id":"https://openalex.org/W4396628331","doi":"https://doi.org/10.48550/arxiv.2405.00592","title":"Scaling and renormalization in high-dimensional regression","display_name":"Scaling and renormalization in high-dimensional regression","publication_year":2024,"publication_date":"2024-05-01","ids":{"openalex":"https://openalex.org/W4396628331","doi":"https://doi.org/10.48550/arxiv.2405.00592"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2405.00592","pdf_url":"https://arxiv.org/pdf/2405.00592","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/2405.00592","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5046607604","display_name":"Alexander Atanasov","orcid":"https://orcid.org/0000-0002-3338-0324"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Atanasov, Alexander B.","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5096293713","display_name":"Jacob A. Zavatone-Veth","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zavatone-Veth, Jacob A.","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5023195984","display_name":"Cengiz Pehlevan","orcid":"https://orcid.org/0000-0001-9767-6063"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Pehlevan, Cengiz","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":84},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11901","display_name":"Bayesian Methods and Mixture Models","score":0.0898,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11901","display_name":"Bayesian Methods and Mixture Models","score":0.0898,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10136","display_name":"Statistical Methods and Inference","score":0.0809,"subfield":{"id":"https://openalex.org/subfields/2613","display_name":"Statistics and Probability"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C166124518","wikidata":"https://www.wikidata.org/wiki/Q1047702","display_name":"Renormalization","level":2,"score":0.75657713},{"id":"https://openalex.org/C99844830","wikidata":"https://www.wikidata.org/wiki/Q102441924","display_name":"Scaling","level":2,"score":0.75517905},{"id":"https://openalex.org/C83546350","wikidata":"https://www.wikidata.org/wiki/Q1139051","display_name":"Regression","level":2,"score":0.53587556},{"id":"https://openalex.org/C121864883","wikidata":"https://www.wikidata.org/wiki/Q677916","display_name":"Statistical physics","level":1,"score":0.5006554},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.4247284},{"id":"https://openalex.org/C152877465","wikidata":"https://www.wikidata.org/wiki/Q208042","display_name":"Regression analysis","level":2,"score":0.41290855},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.36898395},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.27252114},{"id":"https://openalex.org/C37914503","wikidata":"https://www.wikidata.org/wiki/Q156495","display_name":"Mathematical physics","level":1,"score":0.24895513},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.051169157}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2405.00592","pdf_url":"https://arxiv.org/pdf/2405.00592","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2405.00592","pdf_url":"https://arxiv.org/pdf/2405.00592","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W3217323610","https://openalex.org/W3105329589","https://openalex.org/W3102781811","https://openalex.org/W3100245096","https://openalex.org/W2519545954","https://openalex.org/W2083192414","https://openalex.org/W2056843536","https://openalex.org/W1995826969","https://openalex.org/W1990001655","https://openalex.org/W1979444024"],"abstract_inverted_index":{"This":[0,79],"paper":[1],"presents":[2],"a":[3,13,64,82,100,138,156,207],"succinct":[4],"derivation":[5],"of":[6,12,15,24,37,67,73,76,85,88,99,103,125,142,213],"the":[7,21,56,71,74,86,96,113,117,126,164,168,173,199],"training":[8,57],"and":[9,28,35,50,58,121,190,205],"generalization":[10,59,97,119],"performance":[11,171,189],"variety":[14],"high-dimensional":[16],"ridge":[17],"regression":[18],"models":[19,145,162,186,212],"using":[20],"basic":[22],"tools":[23],"random":[25,104,143,160,184],"matrix":[26],"theory":[27],"free":[29,77],"probability.":[30,78],"We":[31,94,107,176],"provide":[32,206],"an":[33,123],"introduction":[34],"review":[36],"recent":[38],"results":[39,151,203],"on":[40,210],"these":[41,130],"topics,":[42],"aimed":[43],"at":[44],"readers":[45],"with":[46,146],"backgrounds":[47],"in":[48,63,91,110,172,183,198],"physics":[49],"deep":[51],"learning.":[52],"Analytic":[53],"formulas":[54],"for":[55,81,137,159,195],"errors":[60],"are":[61],"obtained":[62],"few":[65],"lines":[66],"algebra":[68],"directly":[69],"from":[70],"properties":[72],"$S$-transform":[75,114],"allows":[80],"straightforward":[83],"identification":[84],"sources":[87],"power-law":[89],"scaling":[90,157,215],"model":[92],"performance.":[93],"compute":[95],"error":[98],"broad":[101],"class":[102,141],"feature":[105,144,161,185],"models.":[106],"find":[108],"that":[109],"all":[111],"models,":[112],"corresponds":[115],"to":[116,154,167,192],"train-test":[118],"gap,":[120],"yields":[122],"analogue":[124],"generalized-cross-validation":[127],"estimator.":[128],"Using":[129],"techniques,":[131],"we":[132],"derive":[133],"fine-grained":[134],"bias-variance":[135],"decompositions":[136],"very":[139],"general":[140],"structured":[147],"covariates.":[148],"These":[149],"novel":[150],"allow":[152],"us":[153],"discover":[155],"regime":[158],"where":[163],"variance":[165],"due":[166],"features":[169],"limits":[170],"overparameterized":[174,200],"setting.":[175,201],"also":[177],"demonstrate":[178],"how":[179],"anisotropic":[180],"weight":[181],"structure":[182],"can":[187],"limit":[188],"lead":[191],"nontrivial":[193],"exponents":[194],"finite-width":[196],"corrections":[197],"Our":[202],"extend":[204],"unifying":[208],"perspective":[209],"earlier":[211],"neural":[214],"laws.":[216]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4396628331","counts_by_year":[],"updated_date":"2024-12-14T05:37:39.431567","created_date":"2024-05-04"}