{"id":"https://openalex.org/W4394906223","doi":"https://doi.org/10.48550/arxiv.2404.10365","title":"Learning Wireless Data Knowledge Graph for Green Intelligent\n Communications: Methodology and Experiments","display_name":"Learning Wireless Data Knowledge Graph for Green Intelligent\n Communications: Methodology and Experiments","publication_year":2024,"publication_date":"2024-04-16","ids":{"openalex":"https://openalex.org/W4394906223","doi":"https://doi.org/10.48550/arxiv.2404.10365"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2404.10365","pdf_url":"http://arxiv.org/pdf/2404.10365","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2404.10365","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5024880334","display_name":"Yong\u2010Ming Huang","orcid":"https://orcid.org/0000-0001-5749-3107"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Huang, Yongming","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5072916702","display_name":"Xiaohu You","orcid":"https://orcid.org/0000-0002-0809-8511"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"You, Xiaohu","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5102833338","display_name":"Hang Zhan","orcid":"https://orcid.org/0000-0002-2382-4577"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhan, Hang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5046019676","display_name":"Shiwen He","orcid":"https://orcid.org/0000-0003-0549-4970"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"He, Shiwen","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5079013080","display_name":"Ningning Fu","orcid":"https://orcid.org/0000-0002-0198-8749"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Fu, Ningning","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5101264135","display_name":"Wei Xu","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Xu, Wei","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":84},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10080","display_name":"Energy Efficient Wireless Sensor Networks","score":0.9862,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10080","display_name":"Energy Efficient Wireless Sensor Networks","score":0.9862,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/knowledge-graph","display_name":"Knowledge graph","score":0.58755535}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6474924},{"id":"https://openalex.org/C2987255567","wikidata":"https://www.wikidata.org/wiki/Q33002955","display_name":"Knowledge graph","level":2,"score":0.58755535},{"id":"https://openalex.org/C555944384","wikidata":"https://www.wikidata.org/wiki/Q249","display_name":"Wireless","level":2,"score":0.54628813},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.545608},{"id":"https://openalex.org/C2522767166","wikidata":"https://www.wikidata.org/wiki/Q2374463","display_name":"Data science","level":1,"score":0.387557},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.2982478},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.2958085},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.23155534}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2404.10365","pdf_url":"http://arxiv.org/pdf/2404.10365","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2404.10365","pdf_url":"http://arxiv.org/pdf/2404.10365","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4391913857","https://openalex.org/W4391375266","https://openalex.org/W2748952813","https://openalex.org/W2390279801","https://openalex.org/W2382290278","https://openalex.org/W2376932109","https://openalex.org/W2358668433","https://openalex.org/W2350741829","https://openalex.org/W2054026175","https://openalex.org/W2001405890"],"abstract_inverted_index":{"Intelligent":[0],"communications":[1],"have":[2,220],"played":[3],"a":[4,43,53,74,106,137,222,226,238],"pivotal":[5],"role":[6],"in":[7,133],"shaping":[8],"the":[9,61,80,85,94,109,118,125,134,142,148,160,174,248,251],"evolution":[10],"of":[11,45,55,68,79,87,120,129,136,169,177,250],"6G":[12],"networks.":[13,214],"Native":[14],"artificial":[15],"intelligence":[16,67],"(AI)":[17],"within":[18],"green":[19],"communication":[20,69,156,213],"systems":[21,70],"must":[22],"meet":[23],"stringent":[24],"real-time":[25,66],"requirements.":[26,191],"To":[27,215],"achieve":[28],"this,":[29],"deploying":[30],"lightweight":[31],"and":[32,48,99,150,158,179,201,210],"resource-efficient":[33],"AI":[34,63,89,114,198],"models":[35],"is":[36],"necessary.":[37],"However,":[38],"as":[39,184,235,237],"wireless":[40,138,143,155],"networks":[41,157],"generate":[42],"multitude":[44],"data":[46,81,139,144,152,164,170],"fields":[47],"indicators":[49],"during":[50],"operation,":[51],"only":[52,196],"fraction":[54],"them":[56],"imposes":[57],"significant":[58],"impact":[59],"on":[60,73],"network":[62,88,232],"models.":[64,90],"Therefore,":[65],"heavily":[71],"relies":[72],"small":[75],"but":[76,204],"critical":[77],"set":[78],"that":[82],"profoundly":[83],"influences":[84],"performance":[86],"These":[91],"challenges":[92],"underscore":[93],"need":[95],"for":[96,212],"innovative":[97],"architectures":[98],"solutions.":[100],"In":[101],"this":[102,193,217],"paper,":[103],"we":[104,146,219],"propose":[105],"solution,":[107],"termed":[108],"pervasive":[110],"multi-level":[111],"(PML)":[112],"native":[113],"architecture,":[115,218],"which":[116],"integrates":[117],"concept":[119],"knowledge":[121],"graph":[122,168,229],"(KG)":[123],"into":[124],"intelligent":[126],"operational":[127],"manipulations":[128],"mobile":[130],"networks,":[131],"resulting":[132],"establishment":[135],"KG.":[140],"Leveraging":[141],"KG,":[145],"characterize":[147],"massive":[149],"complex":[151],"collected":[153],"from":[154],"analyze":[159],"relationships":[161],"among":[162],"various":[163],"fields.":[165],"The":[166],"obtained":[167],"field":[171],"relations":[172],"enables":[173],"on-demand":[175],"generation":[176,241],"minimal":[178],"effective":[180],"datasets,":[181,186],"referred":[182],"to":[183,188,246],"feature":[185,239],"tailored":[187],"specific":[189,223],"application":[190],"Consequently,":[192],"architecture":[194],"not":[195],"enhances":[197],"training,":[199],"inference,":[200],"validation":[202],"processes":[203],"also":[205],"significantly":[206],"reduces":[207],"resource":[208],"wastage":[209],"overhead":[211],"implement":[216],"developed":[221],"solution":[224],"comprising":[225],"spatio-temporal":[227],"heterogeneous":[228],"attention":[230],"neural":[231],"model":[233],"(STREAM)":[234],"well":[236],"dataset":[240],"algorithm.":[242],"Experiments":[243],"are":[244],"conducted":[245],"validate":[247],"effectiveness":[249],"proposed":[252],"architecture.":[253]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4394906223","counts_by_year":[],"updated_date":"2024-12-15T10:03:44.839377","created_date":"2024-04-18"}