{"id":"https://openalex.org/W4394708978","doi":"https://doi.org/10.48550/arxiv.2404.06007","title":"Collaborative Edge AI Inference over Cloud-RAN","display_name":"Collaborative Edge AI Inference over Cloud-RAN","publication_year":2024,"publication_date":"2024-04-09","ids":{"openalex":"https://openalex.org/W4394708978","doi":"https://doi.org/10.48550/arxiv.2404.06007"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2404.06007","pdf_url":"https://arxiv.org/pdf/2404.06007","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/2404.06007","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5114804031","display_name":"Pengfei Zhang","orcid":"https://orcid.org/0009-0007-2885-2730"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhang, Pengfei","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5087111627","display_name":"Dingzhu Wen","orcid":"https://orcid.org/0000-0003-0538-5811"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wen, Dingzhu","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5004583148","display_name":"Guangxu Zhu","orcid":"https://orcid.org/0000-0001-9532-9201"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhu, Guangxu","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5019562814","display_name":"Qimei Chen","orcid":"https://orcid.org/0000-0003-2497-8911"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Chen, Qimei","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5043358532","display_name":"Kaifeng Han","orcid":"https://orcid.org/0000-0001-6940-073X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Han, Kaifeng","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5022499594","display_name":"Yuanming Shi","orcid":"https://orcid.org/0000-0002-1418-7465"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Shi, Yuanming","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":77},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10273","display_name":"IoT and Edge/Fog Computing","score":0.9585,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10273","display_name":"IoT and Edge/Fog Computing","score":0.9585,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12702","display_name":"Brain Tumor Detection and Classification","score":0.9538,"subfield":{"id":"https://openalex.org/subfields/2808","display_name":"Neurology"},"field":{"id":"https://openalex.org/fields/28","display_name":"Neuroscience"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/ran","display_name":"Ran","score":0.79822063},{"id":"https://openalex.org/keywords/c-ran","display_name":"C-RAN","score":0.536519}],"concepts":[{"id":"https://openalex.org/C160704184","wikidata":"https://www.wikidata.org/wiki/Q18031028","display_name":"Ran","level":2,"score":0.79822063},{"id":"https://openalex.org/C79974875","wikidata":"https://www.wikidata.org/wiki/Q483639","display_name":"Cloud computing","level":2,"score":0.77110374},{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.72714275},{"id":"https://openalex.org/C162307627","wikidata":"https://www.wikidata.org/wiki/Q204833","display_name":"Enhanced Data Rates for GSM Evolution","level":2,"score":0.6123004},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5377268},{"id":"https://openalex.org/C2779765720","wikidata":"https://www.wikidata.org/wiki/Q5005908","display_name":"C-RAN","level":5,"score":0.536519},{"id":"https://openalex.org/C136764020","wikidata":"https://www.wikidata.org/wiki/Q466","display_name":"World Wide Web","level":1,"score":0.3238362},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.2849995},{"id":"https://openalex.org/C31258907","wikidata":"https://www.wikidata.org/wiki/Q1301371","display_name":"Computer network","level":1,"score":0.12578183},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.09430477},{"id":"https://openalex.org/C106365562","wikidata":"https://www.wikidata.org/wiki/Q3078360","display_name":"Radio access network","level":4,"score":0.09360683},{"id":"https://openalex.org/C207029474","wikidata":"https://www.wikidata.org/wiki/Q384018","display_name":"Mobile station","level":3,"score":0.0},{"id":"https://openalex.org/C68649174","wikidata":"https://www.wikidata.org/wiki/Q1379116","display_name":"Base station","level":2,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2404.06007","pdf_url":"https://arxiv.org/pdf/2404.06007","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2404.06007","pdf_url":"https://arxiv.org/pdf/2404.06007","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4324323655","https://openalex.org/W4313555347","https://openalex.org/W4205856738","https://openalex.org/W3037103914","https://openalex.org/W3018338683","https://openalex.org/W2931048898","https://openalex.org/W2922954044","https://openalex.org/W2885627391","https://openalex.org/W2436923341","https://openalex.org/W1982654631"],"abstract_inverted_index":{"In":[0],"this":[1,102,163],"paper,":[2],"a":[3,88,111,166],"cloud":[4],"radio":[5,41],"access":[6],"network":[7],"(Cloud-RAN)":[8],"based":[9],"collaborative":[10],"edge":[11],"AI":[12],"inference":[13,97,108,180],"architecture":[14],"is":[15,104],"proposed.":[16],"Specifically,":[17],"geographically":[18],"distributed":[19],"devices":[20,64],"capture":[21],"real-time":[22],"noise-corrupted":[23],"sensory":[24],"data":[25],"samples":[26],"and":[27,85,95,147,172,188],"extract":[28],"the":[29,66,107,120,126,136,148,153,179,186],"noisy":[30],"local":[31,59],"feature":[32,52,60,81,127],"vectors,":[33],"which":[34,118],"are":[35,83],"then":[36],"aggregated":[37,80],"at":[38],"each":[39,56],"remote":[40],"head":[42],"(RRH)":[43],"to":[44,87,105,177,196],"suppress":[45],"sensing":[46,138],"noise.":[47],"To":[48,159],"realize":[49],"efficient":[50],"uplink":[51],"aggregation,":[53],"we":[54],"allow":[55],"RRH":[57],"receives":[58],"vectors":[61,82],"from":[62,152],"all":[63],"over":[65],"same":[67],"resource":[68],"blocks":[69],"simultaneously":[70,134],"by":[71,143],"leveraging":[72],"an":[73],"over-the-air":[74],"computation":[75],"(AirComp)":[76],"technique.":[77],"Thereafter,":[78],"these":[79,161],"quantized":[84],"transmitted":[86],"central":[89],"processor":[90],"(CP)":[91],"for":[92],"further":[93],"aggregation":[94],"downstream":[96],"tasks.":[98],"Our":[99],"aim":[100],"in":[101,125],"work":[103,164],"maximize":[106],"accuracy":[109,113],"via":[110],"surrogate":[112],"metric":[114],"called":[115],"discriminant":[116],"gain,":[117],"measures":[119],"discernibility":[121],"of":[122,156,190],"different":[123],"classes":[124],"space.":[128],"The":[129],"key":[130],"challenges":[131],"lie":[132],"on":[133],"suppressing":[135],"coupled":[137],"noise,":[139],"AirComp":[140],"distortion":[141],"caused":[142],"hostile":[144],"wireless":[145],"channels,":[146],"quantization":[149,173],"error":[150,174],"resulting":[151],"limited":[154],"capacity":[155],"fronthaul":[157],"links.":[158],"address":[160],"challenges,":[162],"proposes":[165],"joint":[167],"transmit":[168],"precoding,":[169],"receive":[170],"beamforming,":[171],"control":[175],"scheme":[176],"enhance":[178],"accuracy.":[181],"Extensive":[182],"numerical":[183],"experiments":[184],"demonstrate":[185],"effectiveness":[187],"superiority":[189],"our":[191],"proposed":[192],"optimization":[193],"algorithm":[194],"compared":[195],"various":[197],"baselines.":[198]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4394708978","counts_by_year":[],"updated_date":"2025-04-15T09:35:56.670447","created_date":"2024-04-12"}