{"id":"https://openalex.org/W4394007438","doi":"https://doi.org/10.48550/arxiv.2404.03382","title":"DIDA: Denoised Imitation Learning based on Domain Adaptation","display_name":"DIDA: Denoised Imitation Learning based on Domain Adaptation","publication_year":2024,"publication_date":"2024-04-04","ids":{"openalex":"https://openalex.org/W4394007438","doi":"https://doi.org/10.48550/arxiv.2404.03382"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2404.03382","pdf_url":"http://arxiv.org/pdf/2404.03382","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2404.03382","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5113098623","display_name":"Kaichen Huang","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Huang, Kaichen","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5102641334","display_name":"Hai-Hang Sun","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Sun, Hai-Hang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5104271834","display_name":"Shenghua Wan","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wan, Shenghua","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5032671410","display_name":"Minghao Shao","orcid":"https://orcid.org/0000-0001-9512-9285"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Shao, Minghao","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100944135","display_name":"Shuai Feng","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Feng, Shuai","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5046938347","display_name":"Le Gan","orcid":"https://orcid.org/0000-0002-8260-6932"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Gan, Le","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5073912249","display_name":"De\u2010Chuan Zhan","orcid":"https://orcid.org/0000-0002-3533-2078"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhan, De-Chuan","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":84},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10812","display_name":"Human Pose and Action Recognition","score":0.9869,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10812","display_name":"Human Pose and Action Recognition","score":0.9869,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11714","display_name":"Multimodal Machine Learning Applications","score":0.9727,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9677,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/domain-adaptation","display_name":"Domain Adaptation","score":0.7141447}],"concepts":[{"id":"https://openalex.org/C126388530","wikidata":"https://www.wikidata.org/wiki/Q1131737","display_name":"Imitation","level":2,"score":0.74941576},{"id":"https://openalex.org/C2776434776","wikidata":"https://www.wikidata.org/wiki/Q19246213","display_name":"Domain adaptation","level":3,"score":0.7141447},{"id":"https://openalex.org/C139807058","wikidata":"https://www.wikidata.org/wiki/Q352374","display_name":"Adaptation (eye)","level":2,"score":0.5486338},{"id":"https://openalex.org/C36503486","wikidata":"https://www.wikidata.org/wiki/Q11235244","display_name":"Domain (mathematical analysis)","level":2,"score":0.5154115},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.48003092},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.45543417},{"id":"https://openalex.org/C15744967","wikidata":"https://www.wikidata.org/wiki/Q9418","display_name":"Psychology","level":0,"score":0.42459372},{"id":"https://openalex.org/C180747234","wikidata":"https://www.wikidata.org/wiki/Q23373","display_name":"Cognitive psychology","level":1,"score":0.36880368},{"id":"https://openalex.org/C169760540","wikidata":"https://www.wikidata.org/wiki/Q207011","display_name":"Neuroscience","level":1,"score":0.25448853},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.20472437},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C95623464","wikidata":"https://www.wikidata.org/wiki/Q1096149","display_name":"Classifier (UML)","level":2,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2404.03382","pdf_url":"http://arxiv.org/pdf/2404.03382","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2404.03382","pdf_url":"http://arxiv.org/pdf/2404.03382","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4389474468","https://openalex.org/W4321649381","https://openalex.org/W4300172004","https://openalex.org/W4295929828","https://openalex.org/W4287210399","https://openalex.org/W3203792196","https://openalex.org/W3180787869","https://openalex.org/W3156096827","https://openalex.org/W2997645659","https://openalex.org/W2955455867"],"abstract_inverted_index":{"Imitating":[0],"skills":[1],"from":[2,28,39,139],"low-quality":[3],"datasets,":[4],"such":[5],"as":[6],"sub-optimal":[7],"demonstrations":[8,140],"and":[9,111],"observations":[10],"with":[11,41,141],"distractors,":[12],"is":[13,35],"common":[14],"in":[15,83],"real-world":[16],"applications.":[17],"In":[18],"this":[19],"work,":[20],"we":[21,92],"focus":[22],"on":[23,98,128],"the":[24,33,47,58,84,89,108],"problem":[25],"of":[26,49,60,114,144],"Learning":[27],"Noisy":[29],"Demonstrations":[30],"(LND),":[31],"where":[32],"imitator":[34],"required":[36],"to":[37,106,120],"learn":[38,121],"data":[40,50,73],"noise":[42,69,109],"that":[43,131],"often":[44],"occurs":[45],"during":[46],"processes":[48],"collection":[51],"or":[52,74],"transmission.":[53],"Previous":[54],"IL":[55],"methods":[56],"improve":[57],"robustness":[59],"learned":[61,67],"policies":[62],"by":[63],"injecting":[64],"an":[65],"adversarially":[66],"Gaussian":[68],"into":[70],"pure":[71],"expert":[72],"utilizing":[75],"additional":[76],"ranking":[77],"information,":[78],"but":[79,123],"they":[80],"may":[81],"fail":[82],"LND":[85],"setting.":[86],"To":[87],"alleviate":[88],"above":[90],"problems,":[91],"propose":[93],"Denoised":[94],"Imitation":[95],"learning":[96],"based":[97],"Domain":[99],"Adaptation":[100],"(DIDA),":[101],"which":[102],"designs":[103],"two":[104],"discriminators":[105],"distinguish":[107],"level":[110,113],"expertise":[112],"data,":[115],"facilitating":[116],"a":[117],"feature":[118],"encoder":[119],"task-related":[122],"domain-agnostic":[124],"representations.":[125],"Experiment":[126],"results":[127],"MuJoCo":[129],"demonstrate":[130],"DIDA":[132],"can":[133],"successfully":[134],"handle":[135],"challenging":[136],"imitation":[137],"tasks":[138],"various":[142],"types":[143],"noise,":[145],"outperforming":[146],"most":[147],"baseline":[148],"methods.":[149]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4394007438","counts_by_year":[],"updated_date":"2024-12-15T13:12:12.145795","created_date":"2024-04-06"}