{"id":"https://openalex.org/W4394007279","doi":"https://doi.org/10.48550/arxiv.2404.03233","title":"Learn What You Want to Unlearn: Unlearning Inversion Attacks against\n Machine Unlearning","display_name":"Learn What You Want to Unlearn: Unlearning Inversion Attacks against\n Machine Unlearning","publication_year":2024,"publication_date":"2024-04-04","ids":{"openalex":"https://openalex.org/W4394007279","doi":"https://doi.org/10.48550/arxiv.2404.03233"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2404.03233","pdf_url":"http://arxiv.org/pdf/2404.03233","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2404.03233","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5064530863","display_name":"Hongsheng Hu","orcid":"https://orcid.org/0000-0003-4455-4227"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Hu, Hongsheng","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5045409266","display_name":"Shuo Wang","orcid":"https://orcid.org/0000-0003-2562-0225"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wang, Shuo","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5105471300","display_name":"Tian Dong","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Dong, Tian","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5009850797","display_name":"Minhui Xue","orcid":"https://orcid.org/0000-0002-9172-4252"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Xue, Minhui","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":null,"cited_by_percentile_year":{"min":0,"max":77},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":0.996,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":0.996,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C1893757","wikidata":"https://www.wikidata.org/wiki/Q3653001","display_name":"Inversion (geology)","level":3,"score":0.55633134},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.38660648},{"id":"https://openalex.org/C15744967","wikidata":"https://www.wikidata.org/wiki/Q9418","display_name":"Psychology","level":0,"score":0.38221598},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.37718126},{"id":"https://openalex.org/C188147891","wikidata":"https://www.wikidata.org/wiki/Q147638","display_name":"Cognitive science","level":1,"score":0.32393688},{"id":"https://openalex.org/C127313418","wikidata":"https://www.wikidata.org/wiki/Q1069","display_name":"Geology","level":0,"score":0.064873904},{"id":"https://openalex.org/C165205528","wikidata":"https://www.wikidata.org/wiki/Q83371","display_name":"Seismology","level":1,"score":0.055609524},{"id":"https://openalex.org/C77928131","wikidata":"https://www.wikidata.org/wiki/Q193343","display_name":"Tectonics","level":2,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2404.03233","pdf_url":"http://arxiv.org/pdf/2404.03233","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2404.03233","pdf_url":"http://arxiv.org/pdf/2404.03233","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4391913857","https://openalex.org/W2748952813","https://openalex.org/W2530322880","https://openalex.org/W2478288626","https://openalex.org/W2390279801","https://openalex.org/W2382290278","https://openalex.org/W2376932109","https://openalex.org/W2358668433","https://openalex.org/W2350741829","https://openalex.org/W2001405890"],"abstract_inverted_index":{"Machine":[0,111],"unlearning":[1,33,42,54,76,98,119,147,169,225,243],"has":[2],"become":[3],"a":[4,60,79,114],"promising":[5],"solution":[6],"for":[7,235,241],"fulfilling":[8],"the":[9,19,37,46,49,53,68,72,88,93,101,105,110,125,137,145,176,181,185,199,204,208,211,227,233,236,246,249],"\"right":[10],"to":[11,63,91,95,197],"be":[12],"forgotten\",":[13],"under":[14,109],"which":[15,96],"individuals":[16],"can":[17,99,123,179],"request":[18],"deletion":[20],"of":[21,31,41,48,59,104,130,144,184,206,210,229,239,248],"their":[22],"data":[23],"from":[24],"machine":[25,32,75,97,224],"learning":[26],"models.":[27],"However,":[28],"existing":[29],"studies":[30],"mainly":[34],"focus":[35],"on":[36,155,163],"efficacy":[38],"and":[39,71,127,139,162,166,226],"efficiency":[40],"methods,":[43],"while":[44,202],"neglecting":[45],"investigation":[47,90],"privacy":[50,228],"vulnerability":[51],"during":[52],"process.":[55],"With":[56],"two":[57],"versions":[58],"model":[61,70,160],"available":[62],"an":[64,131,220],"adversary,":[65],"that":[66,122,175,195],"is,":[67],"original":[69,138],"unlearned":[73,106,132,140,186,212,230,250],"model,":[74],"opens":[77],"up":[78],"new":[80],"attack":[81,178],"surface.":[82],"In":[83],"this":[84,217],"paper,":[85],"we":[86,117,190],"conduct":[87],"first":[89],"understand":[92],"extent":[94],"leak":[100],"confidential":[102],"content":[103],"data.":[107,187,251],"Specifically,":[108],"Learning":[112],"as":[113],"Service":[115],"setting,":[116],"propose":[118],"inversion":[120,148],"attacks":[121,149],"reveal":[124,180],"feature":[126],"label":[128],"information":[129,183,247],"sample":[133],"by":[134],"only":[135],"accessing":[136],"model.":[141,213],"The":[142,171,214],"effectiveness":[143],"proposed":[146,177,200],"is":[150],"evaluated":[151],"through":[152],"extensive":[153],"experiments":[154],"benchmark":[156],"datasets":[157],"across":[158],"various":[159],"architectures":[161],"both":[164],"exact":[165],"approximate":[167],"representative":[168],"approaches.":[170],"experimental":[172],"results":[173],"indicate":[174],"sensitive":[182],"As":[188],"such,":[189],"identify":[191],"three":[192],"possible":[193],"defenses":[194],"help":[196],"mitigate":[198],"attacks,":[201],"at":[203],"cost":[205],"reducing":[207],"utility":[209],"study":[215],"in":[216],"paper":[218],"uncovers":[219],"underexplored":[221],"gap":[222],"between":[223],"data,":[231],"highlighting":[232],"need":[234],"careful":[237],"design":[238],"mechanisms":[240],"implementing":[242],"without":[244],"leaking":[245]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4394007279","counts_by_year":[],"updated_date":"2025-04-21T19:40:07.997785","created_date":"2024-04-06"}