{"id":"https://openalex.org/W4393905289","doi":"https://doi.org/10.48550/arxiv.2404.01253","title":"UniArk: Improving Generalisation and Consistency for Factual Knowledge\n Extraction through Debiasing","display_name":"UniArk: Improving Generalisation and Consistency for Factual Knowledge\n Extraction through Debiasing","publication_year":2024,"publication_date":"2024-04-01","ids":{"openalex":"https://openalex.org/W4393905289","doi":"https://doi.org/10.48550/arxiv.2404.01253"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2404.01253","pdf_url":"https://arxiv.org/pdf/2404.01253","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/2404.01253","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5101922356","display_name":"Yijun Yang","orcid":"https://orcid.org/0000-0002-4496-3154"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yang, Yijun","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5042267540","display_name":"Jie He","orcid":"https://orcid.org/0000-0002-3752-4233"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"He, Jie","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5023609587","display_name":"Pinzhen Chen","orcid":"https://orcid.org/0000-0003-0089-5118"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Chen, Pinzhen","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5060245641","display_name":"V\u00edctor Guti\u00e9rrez-Basulto","orcid":"https://orcid.org/0000-0002-6117-5459"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Guti\u00e9rrez-Basulto, V\u00edctor","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5066422711","display_name":"Jeff Z. Pan","orcid":"https://orcid.org/0000-0002-9779-2088"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Pan, Jeff Z.","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":77},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10181","display_name":"Natural Language Processing Techniques","score":0.998,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10181","display_name":"Natural Language Processing Techniques","score":0.998,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9936,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13083","display_name":"Advanced Text Analysis Techniques","score":0.9913,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/debiasing","display_name":"Debiasing","score":0.9952891}],"concepts":[{"id":"https://openalex.org/C2779458634","wikidata":"https://www.wikidata.org/wiki/Q24963715","display_name":"Debiasing","level":2,"score":0.9952891},{"id":"https://openalex.org/C2776436953","wikidata":"https://www.wikidata.org/wiki/Q5163215","display_name":"Consistency (knowledge bases)","level":2,"score":0.7093779},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.47188795},{"id":"https://openalex.org/C15744967","wikidata":"https://www.wikidata.org/wiki/Q9418","display_name":"Psychology","level":0,"score":0.3379668},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.2502575},{"id":"https://openalex.org/C77805123","wikidata":"https://www.wikidata.org/wiki/Q161272","display_name":"Social psychology","level":1,"score":0.15122217}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2404.01253","pdf_url":"https://arxiv.org/pdf/2404.01253","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2404.01253","pdf_url":"https://arxiv.org/pdf/2404.01253","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4390963114","https://openalex.org/W4386875279","https://openalex.org/W4362554880","https://openalex.org/W4287887864","https://openalex.org/W4281684980","https://openalex.org/W4225584739","https://openalex.org/W3214527415","https://openalex.org/W2748952813","https://openalex.org/W2171721708","https://openalex.org/W1495104519"],"abstract_inverted_index":{"Several":[0],"recent":[1],"papers":[2],"have":[3],"investigated":[4],"the":[5,16,31,47,71,106,128],"potential":[6],"of":[7,18,133],"language":[8,57,147],"models":[9,58],"as":[10,13,15,110,112],"knowledge":[11,89],"bases":[12],"well":[14,111],"existence":[17],"severe":[19],"biases":[20],"when":[21],"extracting":[22],"factual":[23,32,88],"knowledge.":[24,61],"In":[25],"this":[26],"work,":[27],"we":[28,45,118],"focus":[29],"on":[30],"probing":[33,60],"performance":[34],"over":[35,75],"unseen":[36,76],"prompts":[37],"from":[38],"tuning,":[39],"and":[40,52,86,123,130],"using":[41,145],"a":[42,121,138],"probabilistic":[43],"view":[44],"show":[46,100],"inherent":[48],"misalignment":[49],"between":[50],"pre-training":[51],"downstream":[53],"tuning":[54],"objectives":[55,68],"in":[56],"for":[59,84,126,141],"We":[62,78],"hypothesize":[63],"that":[64,101],"simultaneously":[65],"debiasing":[66],"these":[67],"can":[69,103],"be":[70],"key":[72],"to":[73],"generalisation":[74,109],"prompts.":[77,116],"propose":[79],"an":[80],"adapter-based":[81],"framework,":[82],"UniArk,":[83],"generalised":[85],"consistent":[87],"extraction":[90],"through":[91],"simple":[92],"methods":[93],"without":[94],"introducing":[95],"extra":[96],"parameters.":[97],"Extensive":[98],"experiments":[99],"UniArk":[102],"significantly":[104],"improve":[105],"model's":[107],"out-of-domain":[108,131],"consistency":[113],"under":[114],"various":[115],"Additionally,":[117],"construct":[119],"ParaTrex,":[120],"large-scale":[122],"diverse":[124],"dataset":[125],"measuring":[127],"inconsistency":[129],"generation":[132],"models.":[134,148],"Further,":[135],"ParaTrex":[136],"offers":[137],"reference":[139],"method":[140],"constructing":[142],"paraphrased":[143],"datasets":[144],"large":[146]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4393905289","counts_by_year":[],"updated_date":"2025-04-16T02:12:48.124314","created_date":"2024-04-04"}