{"id":"https://openalex.org/W4393903132","doi":"https://doi.org/10.48550/arxiv.2404.00570","title":"ParaICL: Towards Robust Parallel In-Context Learning","display_name":"ParaICL: Towards Robust Parallel In-Context Learning","publication_year":2024,"publication_date":"2024-03-31","ids":{"openalex":"https://openalex.org/W4393903132","doi":"https://doi.org/10.48550/arxiv.2404.00570"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2404.00570","pdf_url":"https://arxiv.org/pdf/2404.00570","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/2404.00570","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5039460454","display_name":"Xingxuan Li","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Li, Xingxuan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5041615748","display_name":"Xuan-Phi Nguyen","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Nguyen, Xuan-Phi","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5005443526","display_name":"Shafiq Joty","orcid":"https://orcid.org/0000-0002-9222-2641"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Joty, Shafiq","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5086674741","display_name":"Lidong Bing","orcid":"https://orcid.org/0000-0003-4565-6313"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Bing, Lidong","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":83},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.8473,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.8473,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11714","display_name":"Multimodal Machine Learning Applications","score":0.832,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10444","display_name":"Context-Aware Activity Recognition Systems","score":0.7635,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C2779343474","wikidata":"https://www.wikidata.org/wiki/Q3109175","display_name":"Context (archaeology)","level":2,"score":0.5973301},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5751469},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.084294826},{"id":"https://openalex.org/C166957645","wikidata":"https://www.wikidata.org/wiki/Q23498","display_name":"Archaeology","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2404.00570","pdf_url":"https://arxiv.org/pdf/2404.00570","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2404.00570","pdf_url":"https://arxiv.org/pdf/2404.00570","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4391913857","https://openalex.org/W2748952813","https://openalex.org/W2530322880","https://openalex.org/W2478288626","https://openalex.org/W2390279801","https://openalex.org/W2382290278","https://openalex.org/W2376932109","https://openalex.org/W2358668433","https://openalex.org/W2350741829","https://openalex.org/W2001405890"],"abstract_inverted_index":{"Large":[0],"language":[1,10],"models":[2],"(LLMs)":[3],"have":[4,45],"become":[5],"the":[6,24,31,38,49,67,74,77,116,134,138,141,144,170,179],"norm":[7],"in":[8,14,140],"natural":[9],"processing":[11],"(NLP),":[12],"excelling":[13],"few-shot":[15,34,84],"in-context":[16,105],"learning":[17,106],"(ICL)":[18],"with":[19,200],"their":[20],"remarkable":[21],"abilities.":[22],"Nonetheless,":[23],"success":[25],"of":[26,33,54,69,76,83,137,181],"ICL":[27,59,70],"largely":[28],"hinges":[29],"on":[30],"choice":[32],"demonstration":[35,85,112,127],"examples,":[36],"making":[37],"selection":[39],"process":[40],"increasingly":[41],"crucial.":[42],"Existing":[43],"methods":[44],"delved":[46],"into":[47,129],"optimizing":[48],"quantity":[50],"and":[51,183],"semantic":[52,135,152,160],"similarity":[53],"these":[55],"examples":[56,86,113,128],"to":[57,125,133,143,168,187],"improve":[58],"performances.":[60],"However,":[61],"our":[62],"preliminary":[63],"experiments":[64],"indicate":[65],"that":[66,108,195],"effectiveness":[68,180],"is":[71,166],"limited":[72],"by":[73,163],"length":[75],"input":[78,118],"context.":[79],"Moreover,":[80],"varying":[81],"combinations":[82],"can":[87,197],"significantly":[88],"boost":[89],"accuracy":[90],"across":[91],"different":[92,130],"test":[93,145],"samples.":[94],"To":[95],"address":[96],"this,":[97],"we":[98,177],"propose":[99],"a":[100],"novel":[101],"method":[102],"named":[103],"parallel":[104,123],"(ParaICL)":[107],"effectively":[109],"utilizes":[110],"all":[111],"without":[114],"exceeding":[115],"manageable":[117],"context":[119],"length.":[120],"ParaICL":[121,182,196],"employs":[122],"batching":[124],"distribute":[126],"batches":[131],"according":[132],"similarities":[136],"questions":[139],"demonstrations":[142],"question.":[146],"It":[147],"then":[148],"computes":[149],"normalized":[150],"batch":[151],"scores":[153],"for":[154],"each":[155],"batch.":[156],"A":[157],"weighted":[158],"average":[159],"objective,":[161],"constrained":[162],"adaptive":[164],"plausibility,":[165],"applied":[167],"select":[169],"most":[171],"appropriate":[172],"tokens.":[173],"Through":[174],"extensive":[175],"experiments,":[176],"validate":[178],"conduct":[184],"ablation":[185],"studies":[186],"underscore":[188],"its":[189],"design":[190],"rationale.":[191],"We":[192],"further":[193],"demonstrate":[194],"seamlessly":[198],"integrate":[199],"existing":[201],"methods.":[202]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4393903132","counts_by_year":[],"updated_date":"2025-01-08T23:18:01.262398","created_date":"2024-04-04"}