{"id":"https://openalex.org/W4393399788","doi":"https://doi.org/10.48550/arxiv.2403.20252","title":"Using LLMs to Model the Beliefs and Preferences of Targeted Populations","display_name":"Using LLMs to Model the Beliefs and Preferences of Targeted Populations","publication_year":2024,"publication_date":"2024-03-29","ids":{"openalex":"https://openalex.org/W4393399788","doi":"https://doi.org/10.48550/arxiv.2403.20252"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2403.20252","pdf_url":"https://arxiv.org/pdf/2403.20252","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/2403.20252","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5063558614","display_name":"Keiichi Namikoshi","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Namikoshi, Keiichi","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5080812178","display_name":"Alex Filipowicz","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Filipowicz, Alex","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5001270504","display_name":"David A. Shamma","orcid":"https://orcid.org/0000-0003-2399-9374"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Shamma, David A.","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5076053364","display_name":"Rumen Iliev","orcid":"https://orcid.org/0000-0002-9619-4166"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Iliev, Rumen","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5091314417","display_name":"Candice Hogan","orcid":"https://orcid.org/0000-0002-3240-2560"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Hogan, Candice L.","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5068636555","display_name":"Nikos Ar\u00e9chiga","orcid":"https://orcid.org/0009-0005-5585-7006"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Arechiga, Nikos","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":83},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11918","display_name":"Forecasting Techniques and Applications","score":0.6354,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},"topics":[{"id":"https://openalex.org/T11918","display_name":"Forecasting Techniques and Applications","score":0.6354,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T14351","display_name":"Statistical and Computational Modeling","score":0.5506,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13398","display_name":"Data Analysis with R","score":0.5126,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C15744967","wikidata":"https://www.wikidata.org/wiki/Q9418","display_name":"Psychology","level":0,"score":0.39120355}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2403.20252","pdf_url":"https://arxiv.org/pdf/2403.20252","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2403.20252","pdf_url":"https://arxiv.org/pdf/2403.20252","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4391301621","https://openalex.org/W2931662336","https://openalex.org/W2769102919","https://openalex.org/W2765597752","https://openalex.org/W2748952813","https://openalex.org/W2134894512","https://openalex.org/W2085372204","https://openalex.org/W2083375246","https://openalex.org/W2077865380","https://openalex.org/W2067108088"],"abstract_inverted_index":{"We":[0,79,113],"consider":[1],"the":[2,13,20,89,97,136,142],"problem":[3],"of":[4,15,25,35,99,106,138],"aligning":[5],"a":[6,16,26,33,104,152,164],"large":[7],"language":[8],"model":[9,12,73,158],"(LLM)":[10],"to":[11,71,95,120,129,156],"preferences":[14,98,107],"human":[17,74,101],"population.":[18],"Modeling":[19],"beliefs,":[21],"preferences,":[22],"and":[23,50,81,87,133,150],"behaviors":[24],"specific":[27],"population":[28],"can":[29],"be":[30],"useful":[31],"for":[32,44,55,108],"variety":[34],"different":[36,77],"applications,":[37],"such":[38],"as":[39,124,126],"conducting":[40,47],"simulated":[41],"focus":[42],"groups":[43],"new":[45],"products,":[46],"virtual":[48],"surveys,":[49],"testing":[51],"behavioral":[52],"interventions,":[53],"especially":[54],"interventions":[56],"that":[57,162],"are":[58],"expensive,":[59],"impractical,":[60],"or":[61],"unethical.":[62],"Existing":[63],"work":[64],"has":[65],"had":[66],"mixed":[67],"success":[68],"using":[69],"LLMs":[70],"accurately":[72],"behavior":[75],"in":[76,140],"contexts.":[78],"benchmark":[80],"evaluate":[82,88,114,151],"two":[83],"well-known":[84],"fine-tuning":[85],"approaches":[86],"resulting":[90],"populations":[91],"on":[92,103,160],"their":[93,118,127],"ability":[94,119,128],"match":[96,121,130],"real":[100],"respondents":[102],"survey":[105],"battery":[109],"electric":[110],"vehicles":[111],"(BEVs).":[112],"our":[115],"models":[116],"against":[117],"population-wide":[122],"statistics":[123],"well":[125],"individual":[131],"responses,":[132],"we":[134,148],"investigate":[135],"role":[137],"temperature":[139],"controlling":[141],"trade-offs":[143],"between":[144],"these":[145],"two.":[146],"Additionally,":[147],"propose":[149],"novel":[153],"loss":[154],"term":[155],"improve":[157],"performance":[159],"responses":[161],"require":[163],"numeric":[165],"response.":[166]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4393399788","counts_by_year":[],"updated_date":"2025-01-09T07:27:45.853449","created_date":"2024-04-02"}