{"id":"https://openalex.org/W4393399644","doi":"https://doi.org/10.48550/arxiv.2403.20080","title":"Mixed-precision Supernet Training from Vision Foundation Models using\n Low Rank Adapter","display_name":"Mixed-precision Supernet Training from Vision Foundation Models using\n Low Rank Adapter","publication_year":2024,"publication_date":"2024-03-29","ids":{"openalex":"https://openalex.org/W4393399644","doi":"https://doi.org/10.48550/arxiv.2403.20080"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2403.20080","pdf_url":"https://arxiv.org/pdf/2403.20080","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/2403.20080","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5023805039","display_name":"Yuiko Sakuma","orcid":"https://orcid.org/0000-0003-1933-5196"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Sakuma, Yuiko","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5102086565","display_name":"Masakazu Yoshimura","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yoshimura, Masakazu","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5066409845","display_name":"Junji Otsuka","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Otsuka, Junji","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5108791840","display_name":"Atsushi Irie","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Irie, Atsushi","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5113687209","display_name":"Takeshi Ohashi","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ohashi, Takeshi","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":83},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.8695,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.8695,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T14470","display_name":"Advanced Data Processing Techniques","score":0.7781,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.7352,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/adapter","display_name":"Adapter (computing)","score":0.8430081},{"id":"https://openalex.org/keywords/foundation","display_name":"Foundation (evidence)","score":0.71505535},{"id":"https://openalex.org/keywords/rank","display_name":"Rank (graph theory)","score":0.56717426}],"concepts":[{"id":"https://openalex.org/C177284502","wikidata":"https://www.wikidata.org/wiki/Q1005390","display_name":"Adapter (computing)","level":2,"score":0.8430081},{"id":"https://openalex.org/C2780966255","wikidata":"https://www.wikidata.org/wiki/Q5474306","display_name":"Foundation (evidence)","level":2,"score":0.71505535},{"id":"https://openalex.org/C164226766","wikidata":"https://www.wikidata.org/wiki/Q7293202","display_name":"Rank (graph theory)","level":2,"score":0.56717426},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.48774225},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.4375146},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.16033214},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.11980593},{"id":"https://openalex.org/C9390403","wikidata":"https://www.wikidata.org/wiki/Q3966","display_name":"Computer hardware","level":1,"score":0.10207325},{"id":"https://openalex.org/C166957645","wikidata":"https://www.wikidata.org/wiki/Q23498","display_name":"Archaeology","level":1,"score":0.0},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2403.20080","pdf_url":"https://arxiv.org/pdf/2403.20080","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2403.20080","pdf_url":"https://arxiv.org/pdf/2403.20080","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4385571108","https://openalex.org/W4306381730","https://openalex.org/W4229060448","https://openalex.org/W3184035966","https://openalex.org/W3044188621","https://openalex.org/W2981692913","https://openalex.org/W2748952813","https://openalex.org/W2485605994","https://openalex.org/W2160602540","https://openalex.org/W2133028525"],"abstract_inverted_index":{"Compression":[0],"of":[1,106],"large":[2,70],"and":[3,47,68,102,108,122],"performant":[4],"vision":[5],"foundation":[6],"models":[7],"(VFMs)":[8],"into":[9],"arbitrary":[10,51],"bit-wise":[11],"operations":[12],"(BitOPs)":[13],"allows":[14],"their":[15],"deployment":[16],"on":[17,141],"various":[18],"hardware.":[19],"We":[20],"propose":[21,113],"to":[22,26],"fine-tune":[23],"a":[24,27,45,89,118,123,149],"VFM":[25,90],"mixed-precision":[28,65],"quantized":[29],"supernet.":[30],"The":[31,127,144],"supernet-based":[32],"neural":[33],"architecture":[34],"search":[35,66,84],"(NAS)":[36],"can":[37,54],"be":[38,55],"adopted":[39],"for":[40,87,132],"this":[41],"purpose,":[42],"which":[43],"trains":[44],"supernet,":[46],"then":[48],"subnets":[49],"within":[50],"hardware":[52],"budgets":[53],"extracted.":[56],"However,":[57],"existing":[58],"methods":[59],"face":[60],"difficulties":[61],"in":[62,104,152],"optimizing":[63],"the":[64,82,133],"space":[67,85],"incurring":[69,155],"memory":[71],"costs":[72],"during":[73],"training.":[74],"To":[75],"tackle":[76],"these":[77],"challenges,":[78],"first,":[79],"we":[80,112],"study":[81],"effective":[83],"design":[86],"fine-tuning":[88],"by":[91],"comparing":[92],"different":[93],"operators":[94],"(such":[95],"as":[96],"resolution,":[97],"feature":[98],"size,":[99],"width,":[100],"depth,":[101],"bit-widths)":[103],"terms":[105],"performance":[107,156],"BitOPs":[109,153],"reduction.":[110],"Second,":[111],"memory-efficient":[114],"supernet":[115],"training":[116,125],"using":[117],"low-rank":[119],"adapter":[120],"(LoRA)":[121],"progressive":[124],"strategy.":[126],"proposed":[128,135],"method":[129],"is":[130],"evaluated":[131],"recently":[134],"VFM,":[136],"Segment":[137],"Anything":[138],"Model,":[139],"fine-tuned":[140],"segmentation":[142],"tasks.":[143],"searched":[145],"model":[146],"yields":[147],"about":[148],"95%":[150],"reduction":[151],"without":[154],"degradation.":[157]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4393399644","counts_by_year":[],"updated_date":"2025-01-21T03:13:00.958408","created_date":"2024-04-02"}