{"id":"https://openalex.org/W4393336219","doi":"https://doi.org/10.48550/arxiv.2403.19588","title":"DenseNets Reloaded: Paradigm Shift Beyond ResNets and ViTs","display_name":"DenseNets Reloaded: Paradigm Shift Beyond ResNets and ViTs","publication_year":2024,"publication_date":"2024-03-28","ids":{"openalex":"https://openalex.org/W4393336219","doi":"https://doi.org/10.48550/arxiv.2403.19588"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2403.19588","pdf_url":"http://arxiv.org/pdf/2403.19588","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2403.19588","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100454683","display_name":"Donghyun Kim","orcid":"https://orcid.org/0000-0002-7132-4454"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Kim, Donghyun","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5094282833","display_name":"Byeongho Heo","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Heo, Byeongho","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5094282834","display_name":"Dongyoon Han","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Han, Dongyoon","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":83},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.5272,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.5272,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/paradigm-shift","display_name":"Paradigm shift","score":0.71973217}],"concepts":[{"id":"https://openalex.org/C43540301","wikidata":"https://www.wikidata.org/wiki/Q689971","display_name":"Paradigm shift","level":2,"score":0.71973217},{"id":"https://openalex.org/C111472728","wikidata":"https://www.wikidata.org/wiki/Q9471","display_name":"Epistemology","level":1,"score":0.21573159},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.14189446}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2403.19588","pdf_url":"http://arxiv.org/pdf/2403.19588","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2403.19588","pdf_url":"http://arxiv.org/pdf/2403.19588","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4385680714","https://openalex.org/W4214843831","https://openalex.org/W2802231598","https://openalex.org/W2796237475","https://openalex.org/W245263593","https://openalex.org/W2410321111","https://openalex.org/W2383178796","https://openalex.org/W2210897239","https://openalex.org/W1985637954","https://openalex.org/W173782983"],"abstract_inverted_index":{"This":[0],"paper":[1],"revives":[2],"Densely":[3],"Connected":[4],"Convolutional":[5],"Networks":[6],"(DenseNets)":[7],"and":[8,28,68,75,94,119,125],"reveals":[9],"the":[10,100,115,137,140],"underrated":[11],"effectiveness":[12],"over":[13,142],"predominant":[14],"ResNet-style":[15],"architectures.":[16,57],"We":[17,58],"believe":[18],"DenseNets'":[19],"potential":[20],"was":[21],"overlooked":[22],"due":[23],"to":[24,53],"untouched":[25],"training":[26,70],"methods":[27],"traditional":[29],"design":[30],"elements":[31],"not":[32],"fully":[33],"revealing":[34],"their":[35],"capabilities.":[36],"Our":[37,83,152],"pilot":[38],"study":[39],"shows":[40],"dense":[41],"connections":[42],"through":[43],"concatenation":[44,81,141],"are":[45],"strong,":[46],"demonstrating":[47],"that":[48,135],"DenseNets":[49,74],"can":[50],"be":[51],"revitalized":[52],"compete":[54],"with":[55,114],"modern":[56],"methodically":[59],"refine":[60],"suboptimal":[61],"components":[62],"-":[63,96],"architectural":[64,87],"adjustments,":[65],"block":[66],"redesign,":[67],"improved":[69],"recipes":[71],"towards":[72,149],"widening":[73],"boosting":[76],"memory":[77],"efficiency":[78],"while":[79],"keeping":[80],"shortcuts.":[82],"models,":[84],"employing":[85],"simple":[86],"elements,":[88],"ultimately":[89],"surpass":[90],"Swin":[91],"Transformer,":[92],"ConvNeXt,":[93],"DeiT-III":[95],"key":[97],"architectures":[98],"in":[99],"residual":[101],"learning":[102],"lineage.":[103],"Furthermore,":[104],"our":[105],"models":[106,118],"exhibit":[107],"near":[108],"state-of-the-art":[109],"performance":[110],"on":[111],"ImageNet-1K,":[112],"competing":[113],"very":[116],"recent":[117],"downstream":[120],"tasks,":[121],"ADE20k":[122],"semantic":[123],"segmentation,":[124],"COCO":[126],"object":[127],"detection/instance":[128],"segmentation.":[129],"Finally,":[130],"we":[131],"provide":[132],"empirical":[133],"analyses":[134],"uncover":[136],"merits":[138],"of":[139],"additive":[143],"shortcuts,":[144],"steering":[145],"a":[146],"renewed":[147],"preference":[148],"DenseNet-style":[150],"designs.":[151],"code":[153],"is":[154],"available":[155],"at":[156],"https://github.com/naver-ai/rdnet.":[157]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4393336219","counts_by_year":[],"updated_date":"2025-01-08T22:59:44.027326","created_date":"2024-03-30"}