{"id":"https://openalex.org/W4393335758","doi":"https://doi.org/10.48550/arxiv.2403.19243","title":"Sine Activated Low-Rank Matrices for Parameter Efficient Learning","display_name":"Sine Activated Low-Rank Matrices for Parameter Efficient Learning","publication_year":2024,"publication_date":"2024-03-28","ids":{"openalex":"https://openalex.org/W4393335758","doi":"https://doi.org/10.48550/arxiv.2403.19243"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2403.19243","pdf_url":"http://arxiv.org/pdf/2403.19243","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2403.19243","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5102637407","display_name":"Yiping Ji","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ji, Yiping","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5089436617","display_name":"Hemanth Saratchandran","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Saratchandran, Hemanth","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5088430398","display_name":"Cameron Gordon","orcid":"https://orcid.org/0000-0003-0434-978X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Gordon, Cameron","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100358735","display_name":"Zeyu Zhang","orcid":"https://orcid.org/0009-0006-2834-3007"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhang, Zeyu","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5055053078","display_name":"Simon Lucey","orcid":"https://orcid.org/0000-0002-6326-042X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Lucey, Simon","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":78},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.9938,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.9938,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11447","display_name":"Blind Source Separation Techniques","score":0.9889,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12564","display_name":"Sensor Technology and Measurement Systems","score":0.9275,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/rank","display_name":"Rank (graph theory)","score":0.78427565},{"id":"https://openalex.org/keywords/sine","display_name":"Sine","score":0.75345904}],"concepts":[{"id":"https://openalex.org/C164226766","wikidata":"https://www.wikidata.org/wiki/Q7293202","display_name":"Rank (graph theory)","level":2,"score":0.78427565},{"id":"https://openalex.org/C186661526","wikidata":"https://www.wikidata.org/wiki/Q13647261","display_name":"Sine","level":2,"score":0.75345904},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.47780067},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.22567648},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.10441837}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2403.19243","pdf_url":"http://arxiv.org/pdf/2403.19243","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2403.19243","pdf_url":"http://arxiv.org/pdf/2403.19243","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4238204885","https://openalex.org/W3002753104","https://openalex.org/W2963966623","https://openalex.org/W2600246793","https://openalex.org/W2142036596","https://openalex.org/W2077600819","https://openalex.org/W2072657027","https://openalex.org/W2061531152","https://openalex.org/W2007980826","https://openalex.org/W1979597421"],"abstract_inverted_index":{"Low-rank":[0],"decomposition":[1,86],"has":[2,43],"emerged":[3],"as":[4,125],"a":[5,33,40,74,80],"vital":[6],"tool":[7],"for":[8,121],"enhancing":[9,110],"parameter":[10,48,97],"efficiency":[11,49,98,153],"in":[12,21,131],"neural":[13],"network":[14],"architectures,":[15],"gaining":[16],"traction":[17],"across":[18],"diverse":[19],"applications":[20],"machine":[22],"learning.":[23],"These":[24],"techniques":[25],"significantly":[26],"lower":[27],"the":[28,45,51,54,84,93,96,106,149],"number":[29],"of":[30,53,95,100,154],"parameters,":[31],"striking":[32],"balance":[34],"between":[35,47],"compactness":[36],"and":[37,50,143,152],"performance.":[38],"However,":[39],"common":[41],"challenge":[42],"been":[44],"compromise":[46],"accuracy":[52,63],"model,":[55],"where":[56],"reduced":[57],"parameters":[58],"often":[59],"lead":[60],"to":[61,65,116],"diminished":[62],"compared":[64],"their":[66],"full-rank":[67],"counterparts.":[68],"In":[69],"this":[70],"work,":[71],"we":[72],"propose":[73],"novel":[75],"theoretical":[76],"framework":[77],"that":[78],"integrates":[79],"sinusoidal":[81],"function":[82],"within":[83],"low-rank":[85,101,123],"process.":[87],"This":[88,147],"approach":[89],"not":[90],"only":[91],"preserves":[92],"benefits":[94],"characteristic":[99],"methods":[102],"but":[103],"also":[104],"increases":[105],"decomposition's":[107],"rank,":[108],"thereby":[109],"model":[111],"accuracy.":[112],"Our":[113],"method":[114],"proves":[115],"be":[117],"an":[118],"adaptable":[119],"enhancement":[120],"existing":[122],"models,":[124],"evidenced":[126],"by":[127],"its":[128],"successful":[129],"application":[130],"Vision":[132],"Transformers":[133],"(ViT),":[134],"Large":[135],"Language":[136],"Models":[137],"(LLMs),":[138],"Neural":[139],"Radiance":[140],"Fields":[141],"(NeRF),":[142],"3D":[144],"shape":[145],"modeling.":[146],"demonstrates":[148],"wide-ranging":[150],"potential":[151],"our":[155],"proposed":[156],"technique.":[157]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4393335758","counts_by_year":[],"updated_date":"2025-04-04T01:03:25.019793","created_date":"2024-03-30"}