{"id":"https://openalex.org/W4393284428","doi":"https://doi.org/10.48550/arxiv.2403.17124","title":"Grounding Language Plans in Demonstrations Through Counterfactual\n Perturbations","display_name":"Grounding Language Plans in Demonstrations Through Counterfactual\n Perturbations","publication_year":2024,"publication_date":"2024-03-25","ids":{"openalex":"https://openalex.org/W4393284428","doi":"https://doi.org/10.48550/arxiv.2403.17124"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2403.17124","pdf_url":"http://arxiv.org/pdf/2403.17124","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2403.17124","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5104266353","display_name":"Yanwei Wang","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wang, Yanwei","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5017563787","display_name":"Tsun-Hsuan Wang","orcid":"https://orcid.org/0000-0002-7259-5686"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wang, Tsun-Hsuan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5094272558","display_name":"Jiayuan Mao","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Mao, Jiayuan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5052368316","display_name":"Michael Hagenow","orcid":"https://orcid.org/0000-0002-4532-2949"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Hagenow, Michael","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5044369720","display_name":"Julie Shah","orcid":"https://orcid.org/0000-0003-1338-8107"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Shah, Julie","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":77},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10181","display_name":"Natural Language Processing Techniques","score":0.4075,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10181","display_name":"Natural Language Processing Techniques","score":0.4075,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":0.369,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C108650721","wikidata":"https://www.wikidata.org/wiki/Q1783253","display_name":"Counterfactual thinking","level":2,"score":0.91285646},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.464815},{"id":"https://openalex.org/C15744967","wikidata":"https://www.wikidata.org/wiki/Q9418","display_name":"Psychology","level":0,"score":0.29956847},{"id":"https://openalex.org/C77805123","wikidata":"https://www.wikidata.org/wiki/Q161272","display_name":"Social psychology","level":1,"score":0.14248303}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2403.17124","pdf_url":"http://arxiv.org/pdf/2403.17124","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2403.17124","pdf_url":"http://arxiv.org/pdf/2403.17124","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4384133558","https://openalex.org/W4286970243","https://openalex.org/W3201448254","https://openalex.org/W3028847759","https://openalex.org/W3025615835","https://openalex.org/W2748952813","https://openalex.org/W2393688264","https://openalex.org/W2390660599","https://openalex.org/W2066431708","https://openalex.org/W173210993"],"abstract_inverted_index":{"Grounding":[0],"the":[1,40,58,78,86,106,120,172,184],"common-sense":[2],"reasoning":[3],"of":[4,42,60,82,90,188],"Large":[5],"Language":[6],"Models":[7],"in":[8,31,48,150,171,175],"physical":[9,88,173],"domains":[10],"remains":[11],"a":[12,91,95,140],"pivotal":[13],"yet":[14],"unsolved":[15],"problem":[16],"for":[17,29],"embodied":[18],"AI.":[19],"Whereas":[20],"prior":[21],"works":[22],"have":[23],"focused":[24],"on":[25],"leveraging":[26],"LLMs":[27,37],"directly":[28],"planning":[30,56],"symbolic":[32],"spaces,":[33],"this":[34],"work":[35],"uses":[36],"to":[38,71,132,164],"guide":[39],"search":[41],"task":[43],"structures":[44],"and":[45,85,138,148,186,194,196],"constraints":[46],"implicit":[47],"multi-step":[49],"demonstrations.":[50],"Specifically,":[51],"we":[52,102],"borrow":[53],"from":[54,136],"manipulation":[55,199],"literature":[57],"concept":[59],"mode":[61,151],"families,":[62],"which":[63],"group":[64],"robot":[65,198],"configurations":[66],"by":[67],"specific":[68],"motion":[69],"constraints,":[70],"serve":[72],"as":[73,114,116,139],"an":[74,83,127,176],"abstraction":[75],"layer":[76],"between":[77],"high-level":[79],"language":[80,166],"representations":[81],"LLM":[84],"low-level":[87,146],"trajectories":[89,135],"robot.":[92],"By":[93],"replaying":[94],"few":[96],"human":[97],"demonstrations":[98],"with":[99,110],"synthetic":[100],"perturbations,":[101],"generate":[103],"coverage":[104],"over":[105],"demonstrations'":[107],"state":[108],"space":[109],"additional":[111],"successful":[112,134],"executions":[113],"well":[115],"counterfactuals":[117],"that":[118,144],"fail":[119],"task.":[121],"Our":[122],"explanation-based":[123],"learning":[124,190],"framework":[125],"trains":[126],"end-to-end":[128],"differentiable":[129],"neural":[130],"network":[131],"predict":[133],"failures":[137],"by-product":[141],"learns":[142],"classifiers":[143,159],"ground":[145],"states":[147],"images":[149],"families":[152],"without":[153],"dense":[154],"labeling.":[155],"The":[156],"learned":[157],"grounding":[158],"can":[160],"further":[161],"be":[162],"used":[163],"translate":[165],"plans":[167],"into":[168],"reactive":[169],"policies":[170],"domain":[174],"interpretable":[177],"manner.":[178],"We":[179],"show":[180],"our":[181],"approach":[182],"improves":[183],"interpretability":[185],"reactivity":[187],"imitation":[189],"through":[191],"2D":[192],"navigation":[193],"simulated":[195],"real":[197],"tasks.":[200],"Website:":[201],"https://sites.google.com/view/grounding-plans":[202]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4393284428","counts_by_year":[],"updated_date":"2025-04-18T16:48:25.404301","created_date":"2024-03-29"}