{"id":"https://openalex.org/W4393118871","doi":"https://doi.org/10.48550/arxiv.2403.14339","title":"$\\nabla \\tau$: Gradient-based and Task-Agnostic machine Unlearning","display_name":"$\\nabla \\tau$: Gradient-based and Task-Agnostic machine Unlearning","publication_year":2024,"publication_date":"2024-03-21","ids":{"openalex":"https://openalex.org/W4393118871","doi":"https://doi.org/10.48550/arxiv.2403.14339"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2403.14339","pdf_url":"http://arxiv.org/pdf/2403.14339","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2403.14339","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5094230065","display_name":"Daniel Trippa","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Trippa, Daniel","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5066017451","display_name":"Cesare Campagnano","orcid":"https://orcid.org/0000-0002-8362-274X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Campagnano, Cesare","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5083528787","display_name":"Maria Sofia Bucarelli","orcid":"https://orcid.org/0009-0007-5101-8242"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Bucarelli, Maria Sofia","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5011299100","display_name":"Gabriele Tolomei","orcid":"https://orcid.org/0000-0001-7471-6659"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Tolomei, Gabriele","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5044165871","display_name":"Fabrizio Silvestri","orcid":"https://orcid.org/0000-0001-7669-9055"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Silvestri, Fabrizio","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":83},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.8404,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.8404,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.7519,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12535","display_name":"Machine Learning and Data Classification","score":0.7008,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/nabla-symbol","display_name":"Nabla symbol","score":0.81130266}],"concepts":[{"id":"https://openalex.org/C54207081","wikidata":"https://www.wikidata.org/wiki/Q937750","display_name":"Nabla symbol","level":3,"score":0.81130266},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.6954306},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.47490585},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.44295016},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.16756943},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.13466275},{"id":"https://openalex.org/C201995342","wikidata":"https://www.wikidata.org/wiki/Q682496","display_name":"Systems engineering","level":1,"score":0.06111741},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C2779557605","wikidata":"https://www.wikidata.org/wiki/Q9890","display_name":"Omega","level":2,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2403.14339","pdf_url":"http://arxiv.org/pdf/2403.14339","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2403.14339","pdf_url":"http://arxiv.org/pdf/2403.14339","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4301243416","https://openalex.org/W33469805","https://openalex.org/W2914699178","https://openalex.org/W2788247819","https://openalex.org/W2748952813","https://openalex.org/W2229925025","https://openalex.org/W2156911440","https://openalex.org/W2024985363","https://openalex.org/W1855007440","https://openalex.org/W1539596337"],"abstract_inverted_index":{"Machine":[0],"Unlearning,":[1],"the":[2,7,55,68,96,111,122,135,141,184,215],"process":[3],"of":[4,9,52,57,98,101,137,140,196],"selectively":[5],"eliminating":[6],"influence":[8,97],"certain":[10],"data":[11,31,62,103,112],"examples":[12],"used":[13],"during":[14],"a":[15,23,49,72,99,178,194],"model's":[16,217],"training,":[17],"has":[18],"gained":[19],"significant":[20],"attention":[21],"as":[22,155],"means":[24],"for":[25,121],"practitioners":[26],"to":[27,94,110,113,145,204,210],"comply":[28],"with":[29,48],"recent":[30],"protection":[32],"regulations.":[33],"However,":[34],"existing":[35,131],"unlearning":[36,136,152],"methods":[37,212],"face":[38],"critical":[39],"drawbacks,":[40],"including":[41],"their":[42],"prohibitively":[43],"high":[44],"cost,":[45],"often":[46,65],"associated":[47],"large":[50,138],"number":[51],"hyperparameters,":[53],"and":[54,74,84,161],"limitation":[56],"forgetting":[58,157],"only":[59],"relatively":[60],"small":[61],"portions.":[63],"This":[64],"makes":[66],"retraining":[67,183],"model":[69,185],"from":[70,186],"scratch":[71],"quicker":[73],"more":[75,179],"effective":[76],"solution.":[77],"In":[78],"this":[79],"study,":[80],"we":[81],"introduce":[82],"Gradient-based":[83],"Task-Agnostic":[85],"machine":[86],"Unlearning":[87],"($\\nabla":[88],"\\tau$),":[89],"an":[90],"optimization":[91],"framework":[92],"designed":[93],"remove":[95],"subset":[100,156],"training":[102,142],"efficiently.":[104],"It":[105,133,147],"applies":[106],"adaptive":[107],"gradient":[108,119],"ascent":[109],"be":[114],"forgotten":[115],"while":[116],"using":[117,193],"standard":[118],"descent":[120],"remaining":[123],"data.":[124],"$\\nabla":[125,170],"\\tau$":[126,171],"offers":[127],"multiple":[128],"benefits":[129],"over":[130],"approaches.":[132],"enables":[134],"sections":[139],"dataset":[143],"(up":[144],"30%).":[146],"is":[148],"versatile,":[149],"supporting":[150],"various":[151],"tasks":[153],"(such":[154],"or":[158],"class":[159],"removal)":[160],"applicable":[162],"across":[163],"different":[164],"domains":[165],"(images,":[166],"text,":[167],"etc.).":[168],"Importantly,":[169],"requires":[172],"no":[173],"hyperparameter":[174],"adjustments,":[175],"making":[176],"it":[177],"appealing":[180],"option":[181],"than":[182],"scratch.":[187],"We":[188],"evaluate":[189],"our":[190],"framework's":[191],"effectiveness":[192],"set":[195],"well-established":[197],"Membership":[198],"Inference":[199],"Attack":[200],"metrics,":[201],"demonstrating":[202],"up":[203],"10%":[205],"enhancements":[206],"in":[207],"performance":[208],"compared":[209],"state-of-the-art":[211],"without":[213],"compromising":[214],"original":[216],"accuracy.":[218]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4393118871","counts_by_year":[],"updated_date":"2025-01-07T18:32:53.753265","created_date":"2024-03-24"}