{"id":"https://openalex.org/W4393118513","doi":"https://doi.org/10.48550/arxiv.2403.14151","title":"Deep Learning for Trajectory Data Management and Mining: A Survey and\n Beyond","display_name":"Deep Learning for Trajectory Data Management and Mining: A Survey and\n Beyond","publication_year":2024,"publication_date":"2024-03-21","ids":{"openalex":"https://openalex.org/W4393118513","doi":"https://doi.org/10.48550/arxiv.2403.14151"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2403.14151","pdf_url":"http://arxiv.org/pdf/2403.14151","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2403.14151","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100344481","display_name":"Wei Chen","orcid":"https://orcid.org/0000-0002-7663-278X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Chen, Wei","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5018828723","display_name":"Yuxuan Liang","orcid":"https://orcid.org/0000-0003-2817-7337"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Liang, Yuxuan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5084537731","display_name":"Yuanshao Zhu","orcid":"https://orcid.org/0000-0002-5657-181X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhu, Yuanshao","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5068430693","display_name":"Yanchuan Chang","orcid":"https://orcid.org/0000-0002-1376-0311"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Chang, Yanchuan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101341259","display_name":"Kang Luo","orcid":"https://orcid.org/0009-0003-5866-0175"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Luo, Kang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5038424256","display_name":"Haomin Wen","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wen, Haomin","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5091979218","display_name":"Lei Li","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Li, Lei","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5021981732","display_name":"Yanwei Yu","orcid":"https://orcid.org/0000-0002-5924-1410"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yu, Yanwei","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5048346353","display_name":"Qingsong Wen","orcid":"https://orcid.org/0000-0003-4516-2524"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wen, Qingsong","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100408399","display_name":"Chao Chen","orcid":"https://orcid.org/0000-0003-2094-9734"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Chen, Chao","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5032517198","display_name":"Kai Zheng","orcid":"https://orcid.org/0000-0003-1578-1818"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zheng, Kai","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5006238145","display_name":"Yunjun Gao","orcid":"https://orcid.org/0000-0003-3816-8450"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Gao, Yunjun","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5011384237","display_name":"Xiaofang Zhou","orcid":"https://orcid.org/0000-0001-6343-1455"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhou, Xiaofang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5100681023","display_name":"Yu Zheng","orcid":"https://orcid.org/0000-0002-5224-4344"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zheng, Yu","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":84},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11344","display_name":"Traffic Prediction and Management Techniques","score":0.9919,"subfield":{"id":"https://openalex.org/subfields/2215","display_name":"Building and Construction"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11344","display_name":"Traffic Prediction and Management Techniques","score":0.9919,"subfield":{"id":"https://openalex.org/subfields/2215","display_name":"Building and Construction"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11106","display_name":"Data Management and Algorithms","score":0.9918,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12016","display_name":"Web Data Mining and Analysis","score":0.9694,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/survey-data-collection","display_name":"Survey data collection","score":0.47927853}],"concepts":[{"id":"https://openalex.org/C13662910","wikidata":"https://www.wikidata.org/wiki/Q193139","display_name":"Trajectory","level":2,"score":0.65190196},{"id":"https://openalex.org/C2522767166","wikidata":"https://www.wikidata.org/wiki/Q2374463","display_name":"Data science","level":1,"score":0.54066193},{"id":"https://openalex.org/C198477413","wikidata":"https://www.wikidata.org/wiki/Q7647069","display_name":"Survey data collection","level":2,"score":0.47927853},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.4640998},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.43379408},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.3697306},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.359855},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.1652196},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.16351756},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C1276947","wikidata":"https://www.wikidata.org/wiki/Q333","display_name":"Astronomy","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2403.14151","pdf_url":"http://arxiv.org/pdf/2403.14151","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2403.14151","pdf_url":"http://arxiv.org/pdf/2403.14151","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4375867731","https://openalex.org/W4360995134","https://openalex.org/W4323768008","https://openalex.org/W4248382324","https://openalex.org/W3131574667","https://openalex.org/W3023605104","https://openalex.org/W2387529410","https://openalex.org/W2383578611","https://openalex.org/W2039473718","https://openalex.org/W1941703695"],"abstract_inverted_index":{"Trajectory":[0],"computing":[1,72],"is":[2],"a":[3,58,81],"pivotal":[4],"domain":[5],"encompassing":[6],"trajectory":[7,71,77,96,109,135],"data":[8,78],"management":[9,97],"and":[10,30,47,64,79,101,103,116,144,154,160,166],"mining,":[11],"garnering":[12],"widespread":[13],"attention":[14],"due":[15],"to":[16,50,133],"its":[17],"crucial":[18],"role":[19],"in":[20,67,95,124,151],"various":[21],"practical":[22],"applications":[23,94],"such":[24],"as":[25],"location":[26],"services,":[27],"urban":[28],"traffic,":[29],"public":[31,142],"safety.":[32],"Traditional":[33],"methods,":[34],"focusing":[35],"on":[36],"simplistic":[37],"spatio-temporal":[38],"features,":[39],"face":[40],"challenges":[41,150],"of":[42,61,84],"complex":[43],"calculations,":[44],"limited":[45],"scalability,":[46],"inadequate":[48],"adaptability":[49],"real-world":[51],"complexities.":[52],"In":[53],"this":[54],"paper,":[55],"we":[56,90,120,138,147],"present":[57],"comprehensive":[59],"review":[60],"the":[62,131],"development":[63],"recent":[65,122],"advances":[66],"deep":[68,86,92],"learning":[69,87,93],"for":[70],"(DL4Traj).":[73],"We":[74],"first":[75],"define":[76],"provide":[80],"brief":[82],"overview":[83],"widely-used":[85],"models.":[88],"Systematically,":[89],"explore":[91],"(pre-processing,":[98],"storage,":[99],"analysis,":[100],"visualization)":[102],"mining":[104],"(trajectory-related":[105],"forecasting,":[106],"trajectory-related":[107],"recommendation,":[108],"classification,":[110],"travel":[111],"time":[112],"estimation,":[113],"anomaly":[114],"detection,":[115],"mobility":[117],"generation).":[118],"Notably,":[119],"encapsulate":[121],"advancements":[123],"Large":[125],"Language":[126],"Models":[127],"(LLMs)":[128],"that":[129],"hold":[130],"potential":[132],"augment":[134],"computing.":[136],"Additionally,":[137],"summarize":[139],"application":[140],"scenarios,":[141],"datasets,":[143],"toolkits.":[145],"Finally,":[146],"outline":[148],"current":[149],"DL4Traj":[152],"research":[153],"propose":[155],"future":[156],"directions.":[157],"Relevant":[158],"papers":[159],"open-source":[161],"resources":[162],"have":[163],"been":[164],"collated":[165],"are":[167],"continuously":[168],"updated":[169],"at:":[170],"\\href{https://github.com/yoshall/Awesome-Trajectory-Computing}{DL4Traj":[171],"Repo}.":[172]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4393118513","counts_by_year":[],"updated_date":"2024-12-13T03:26:22.402811","created_date":"2024-03-24"}