{"id":"https://openalex.org/W4393027015","doi":"https://doi.org/10.48550/arxiv.2403.12152","title":"Development of Automated Neural Network Prediction for Echocardiographic\n Left ventricular Ejection Fraction","display_name":"Development of Automated Neural Network Prediction for Echocardiographic\n Left ventricular Ejection Fraction","publication_year":2024,"publication_date":"2024-03-18","ids":{"openalex":"https://openalex.org/W4393027015","doi":"https://doi.org/10.48550/arxiv.2403.12152"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2403.12152","pdf_url":"https://arxiv.org/pdf/2403.12152","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/2403.12152","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100451834","display_name":"Yuting Zhang","orcid":"https://orcid.org/0000-0002-6460-6779"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhang, Yuting","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100387884","display_name":"Boyang Liu","orcid":"https://orcid.org/0000-0003-1532-7754"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Liu, Boyang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5012191941","display_name":"Karina V Bunting","orcid":"https://orcid.org/0000-0003-4602-4377"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Bunting, Karina V.","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5094208250","display_name":"David Brind","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Brind, David","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5030654924","display_name":"Alexander Thorley","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Thorley, Alexander","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5026210150","display_name":"Andreas Karwath","orcid":"https://orcid.org/0000-0002-6942-3760"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Karwath, Andreas","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5051238728","display_name":"Wenqi Lu","orcid":"https://orcid.org/0000-0003-1715-2150"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Lu, Wenqi","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5011782760","display_name":"Diwei Zhou","orcid":"https://orcid.org/0000-0003-4323-7393"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhou, Diwei","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100360033","display_name":"Xiaoxia Wang","orcid":"https://orcid.org/0000-0001-5094-0269"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wang, Xiaoxia","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5018269384","display_name":"Alastair Mobley","orcid":"https://orcid.org/0000-0003-0957-4185"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Mobley, Alastair R.","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5032042351","display_name":"Otilia \u021aica","orcid":"https://orcid.org/0000-0002-6019-122X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Tica, Otilia","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5089900113","display_name":"Georgios V. Gkoutos","orcid":"https://orcid.org/0000-0002-2061-091X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Gkoutos, Georgios","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5001334787","display_name":"Dipak Kotecha","orcid":"https://orcid.org/0000-0002-2570-9812"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Kotecha, Dipak","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5078754523","display_name":"Jinming Duan","orcid":"https://orcid.org/0000-0002-5108-2128"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Duan, Jinming","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":78},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11396","display_name":"Artificial Intelligence in Healthcare","score":0.5815,"subfield":{"id":"https://openalex.org/subfields/3605","display_name":"Health Information Management"},"field":{"id":"https://openalex.org/fields/36","display_name":"Health Professions"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},"topics":[{"id":"https://openalex.org/T11396","display_name":"Artificial Intelligence in Healthcare","score":0.5815,"subfield":{"id":"https://openalex.org/subfields/3605","display_name":"Health Information Management"},"field":{"id":"https://openalex.org/fields/36","display_name":"Health Professions"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T14470","display_name":"Advanced Data Processing Techniques","score":0.502,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/fraction","display_name":"Fraction (chemistry)","score":0.5595808}],"concepts":[{"id":"https://openalex.org/C78085059","wikidata":"https://www.wikidata.org/wiki/Q641303","display_name":"Ejection fraction","level":3,"score":0.7406242},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.6826384},{"id":"https://openalex.org/C149629883","wikidata":"https://www.wikidata.org/wiki/Q660926","display_name":"Fraction (chemistry)","level":2,"score":0.5595808},{"id":"https://openalex.org/C126322002","wikidata":"https://www.wikidata.org/wiki/Q11180","display_name":"Internal medicine","level":1,"score":0.43917626},{"id":"https://openalex.org/C164705383","wikidata":"https://www.wikidata.org/wiki/Q10379","display_name":"Cardiology","level":1,"score":0.43293157},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.40643513},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.36004},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.24326587},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.09857535},{"id":"https://openalex.org/C2778198053","wikidata":"https://www.wikidata.org/wiki/Q181754","display_name":"Heart failure","level":2,"score":0.091401696},{"id":"https://openalex.org/C43617362","wikidata":"https://www.wikidata.org/wiki/Q170050","display_name":"Chromatography","level":1,"score":0.054598957}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2403.12152","pdf_url":"https://arxiv.org/pdf/2403.12152","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2403.12152","pdf_url":"https://arxiv.org/pdf/2403.12152","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4387497383","https://openalex.org/W4382048704","https://openalex.org/W3183948672","https://openalex.org/W3173606202","https://openalex.org/W3110381201","https://openalex.org/W2948807893","https://openalex.org/W2912421895","https://openalex.org/W2778153218","https://openalex.org/W2758277628","https://openalex.org/W1531601525"],"abstract_inverted_index":{"The":[0,158],"echocardiographic":[1],"measurement":[2],"of":[3,16,82,183,193,212,232,244],"left":[4,60],"ventricular":[5],"ejection":[6,197],"fraction":[7],"(LVEF)":[8],"is":[9,234],"fundamental":[10],"to":[11,24,57,74,118,139,168,189,218,236],"the":[12,46,59,65,70,108,141,178],"diagnosis":[13],"and":[14,28,42,121,148],"classification":[15],"patients":[17],"with":[18,126,173,195,204],"heart":[19],"failure":[20],"(HF).":[21],"In":[22,200],"order":[23],"quantify":[25],"LVEF":[26,76,131,165,233],"automatically":[27],"accurately,":[29],"this":[30,207],"paper":[31],"proposes":[32],"a":[33,100,174],"new":[34],"pipeline":[35],"method":[36,145,208],"based":[37,68],"on":[38,69],"deep":[39],"neural":[40,229],"networks":[41],"ensemble":[43,102],"learning.":[44],"Within":[45],"pipeline,":[47],"an":[48,89,111,152,201,210,227],"Atrous":[49],"Convolutional":[50],"Neural":[51],"Network":[52],"(ACNN)":[53],"was":[54,116,146,162],"first":[55],"trained":[56],"segment":[58],"ventricle":[61],"(LV),":[62],"before":[63],"employing":[64],"area-length":[66],"formulation":[67,79],"ellipsoid":[71],"single-plane":[72],"model":[73],"calculate":[75],"values.":[77],"This":[78,144,223],"required":[80],"inputs":[81],"LV":[83,96],"area,":[84],"derived":[85,98],"from":[86,99],"segmentation":[87],"using":[88],"improved":[90],"Jeffrey's":[91],"method,":[92],"as":[93,95],"well":[94],"length,":[97],"novel":[101],"learning":[103],"model.":[104],"To":[105],"further":[106],"improve":[107],"pipeline's":[109],"accuracy,":[110],"automated":[112,228],"peak":[113],"detection":[114],"algorithm":[115],"used":[117],"identify":[119],"end-diastolic":[120],"end-systolic":[122],"frames,":[123],"avoiding":[124],"issues":[125],"human":[127,170],"error.":[128],"Subsequently,":[129],"single-beat":[130],"values":[132],"were":[133],"averaged":[134],"across":[135],"all":[136],"cardiac":[137,245],"cycles":[138],"obtain":[140],"final":[142],"LVEF.":[143],"developed":[147],"internally":[149],"validated":[150],"in":[151],"open-source":[153],"dataset":[154,203],"containing":[155],"10,030":[156],"echocardiograms.":[157],"Pearson's":[159],"correlation":[160],"coefficient":[161],"0.83":[163],"for":[164,191,220],"prediction":[166],"compared":[167],"expert":[169,237],"analysis":[171],"(p<0.001),":[172],"subsequent":[175],"area":[176],"under":[177],"receiver":[179],"operator":[180],"curve":[181],"(AUROC)":[182],"0.98":[184],"(95%":[185,214],"confidence":[186,215],"interval":[187,216],"0.97":[188],"0.99)":[190],"categorisation":[192],"HF":[194],"reduced":[196],"(HFrEF;":[198],"LVEF<40%).":[199],"external":[202],"200":[205],"echocardiograms,":[206],"achieved":[209],"AUC":[211],"0.90":[213],"0.88":[217],"0.91)":[219],"HFrEF":[221],"assessment.":[222],"study":[224],"demonstrates":[225],"that":[226],"network-based":[230],"calculation":[231],"comparable":[235],"clinicians":[238],"performing":[239],"time-consuming,":[240],"frame-by-frame":[241],"manual":[242],"evaluation":[243],"systolic":[246],"function.":[247]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4393027015","counts_by_year":[],"updated_date":"2025-04-10T11:54:47.101484","created_date":"2024-03-21"}