{"id":"https://openalex.org/W4392929764","doi":"https://doi.org/10.48550/arxiv.2403.09904","title":"FedComLoc: Communication-Efficient Distributed Training of Sparse and\n Quantized Models","display_name":"FedComLoc: Communication-Efficient Distributed Training of Sparse and\n Quantized Models","publication_year":2024,"publication_date":"2024-03-14","ids":{"openalex":"https://openalex.org/W4392929764","doi":"https://doi.org/10.48550/arxiv.2403.09904"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2403.09904","pdf_url":"http://arxiv.org/pdf/2403.09904","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2403.09904","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100765686","display_name":"Kai Yi","orcid":"https://orcid.org/0000-0003-0415-3584"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yi, Kai","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5113238844","display_name":"Georg Meinhardt","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Meinhardt, Georg","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5024254029","display_name":"Laurent Condat","orcid":"https://orcid.org/0000-0001-7087-1002"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Condat, Laurent","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5036598221","display_name":"Peter Richt\u00e1rik","orcid":"https://orcid.org/0000-0003-4380-5848"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Richt\u00e1rik, Peter","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":84},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10201","display_name":"Speech Recognition and Synthesis","score":0.9794,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10201","display_name":"Speech Recognition and Synthesis","score":0.9794,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.9551,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13702","display_name":"Machine Learning in Healthcare","score":0.904,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C2777211547","wikidata":"https://www.wikidata.org/wiki/Q17141490","display_name":"Training (meteorology)","level":2,"score":0.70276934},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5972237},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.37773523},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.09123194},{"id":"https://openalex.org/C153294291","wikidata":"https://www.wikidata.org/wiki/Q25261","display_name":"Meteorology","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2403.09904","pdf_url":"http://arxiv.org/pdf/2403.09904","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2403.09904","pdf_url":"http://arxiv.org/pdf/2403.09904","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W2997094352","https://openalex.org/W2810751659","https://openalex.org/W2748952813","https://openalex.org/W258997015","https://openalex.org/W2390279801","https://openalex.org/W2376932109","https://openalex.org/W2358668433","https://openalex.org/W230091440","https://openalex.org/W2233261550","https://openalex.org/W2001405890"],"abstract_inverted_index":{"Federated":[0],"Learning":[1],"(FL)":[2],"has":[3,74],"garnered":[4],"increasing":[5],"attention":[6],"due":[7],"to":[8,16,45,99],"its":[9,114],"unique":[10],"characteristic":[11],"of":[12,31,79],"allowing":[13],"heterogeneous":[14,122],"clients":[15],"process":[17],"their":[18],"private":[19],"data":[20],"locally":[21],"and":[22,89,94,111],"interact":[23],"with":[24],"a":[25],"central":[26],"server,":[27],"while":[28],"being":[29],"respectful":[30],"privacy.":[32],"A":[33,42],"critical":[34],"bottleneck":[35],"in":[36,82,116,121],"FL":[37],"is":[38,49,66],"the":[39,69,77,107],"communication":[40,62,80,102,119],"cost.":[41],"pivotal":[43],"strategy":[44],"mitigate":[46],"this":[47],"burden":[48],"\\emph{Local":[50],"Training},":[51],"which":[52,73],"involves":[53],"running":[54],"multiple":[55],"local":[56],"stochastic":[57],"gradient":[58],"descent":[59],"iterations":[60],"between":[61],"phases.":[63],"Our":[64],"work":[65],"inspired":[67],"by":[68],"innovative":[70],"\\emph{Scaffnew}":[71,98],"algorithm,":[72],"considerably":[75],"advanced":[76],"reduction":[78],"complexity":[81],"FL.":[83],"We":[84],"introduce":[85],"FedComLoc":[86],"(Federated":[87],"Compressed":[88],"Local":[90],"Training),":[91],"integrating":[92],"practical":[93],"effective":[95],"compression":[96],"into":[97],"further":[100],"enhance":[101],"efficiency.":[103],"Extensive":[104],"experiments,":[105],"using":[106],"popular":[108],"TopK":[109],"compressor":[110],"quantization,":[112],"demonstrate":[113],"prowess":[115],"substantially":[117],"reducing":[118],"overheads":[120],"settings.":[123]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4392929764","counts_by_year":[],"updated_date":"2024-12-15T13:40:44.289518","created_date":"2024-03-19"}