{"id":"https://openalex.org/W4392873917","doi":"https://doi.org/10.48550/arxiv.2403.09547","title":"How do Machine Learning Projects use Continuous Integration Practices?\n An Empirical Study on GitHub Actions","display_name":"How do Machine Learning Projects use Continuous Integration Practices?\n An Empirical Study on GitHub Actions","publication_year":2024,"publication_date":"2024-03-14","ids":{"openalex":"https://openalex.org/W4392873917","doi":"https://doi.org/10.48550/arxiv.2403.09547"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2403.09547","pdf_url":"http://arxiv.org/pdf/2403.09547","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2403.09547","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5060702365","display_name":"Jo\u00e3o Helis Bernardo","orcid":"https://orcid.org/0000-0001-7359-4039"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Bernardo, Jo\u00e3o Helis","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5052196896","display_name":"Daniel Alencar da Costa","orcid":"https://orcid.org/0000-0003-4525-3266"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"da Costa, Daniel Alencar","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5057209426","display_name":"S\u00e9rgio Queiroz de Medeiros","orcid":"https://orcid.org/0000-0002-0759-0926"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"de Medeiros, S\u00e9rgio Queiroz","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5064571846","display_name":"Uir\u00e1 Kulesza","orcid":"https://orcid.org/0000-0002-5467-6458"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Kulesza, Uir\u00e1","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":77},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12127","display_name":"Software System Performance and Reliability","score":0.98,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12127","display_name":"Software System Performance and Reliability","score":0.98,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11986","display_name":"Scientific Computing and Data Management","score":0.9689,"subfield":{"id":"https://openalex.org/subfields/1802","display_name":"Information Systems and Management"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T10260","display_name":"Software Engineering Research","score":0.963,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/empirical-research","display_name":"Empirical Research","score":0.54229075}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5946593},{"id":"https://openalex.org/C120936955","wikidata":"https://www.wikidata.org/wiki/Q2155640","display_name":"Empirical research","level":2,"score":0.54229075},{"id":"https://openalex.org/C56739046","wikidata":"https://www.wikidata.org/wiki/Q192060","display_name":"Knowledge management","level":1,"score":0.41017866},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.39115426},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.36939484},{"id":"https://openalex.org/C2522767166","wikidata":"https://www.wikidata.org/wiki/Q2374463","display_name":"Data science","level":1,"score":0.33204046},{"id":"https://openalex.org/C111472728","wikidata":"https://www.wikidata.org/wiki/Q9471","display_name":"Epistemology","level":1,"score":0.07667044},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2403.09547","pdf_url":"http://arxiv.org/pdf/2403.09547","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2403.09547","pdf_url":"http://arxiv.org/pdf/2403.09547","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4386462264","https://openalex.org/W4364306694","https://openalex.org/W4312192474","https://openalex.org/W4306674287","https://openalex.org/W4283697347","https://openalex.org/W4210805261","https://openalex.org/W3170094116","https://openalex.org/W3107602296","https://openalex.org/W3046775127","https://openalex.org/W2961085424"],"abstract_inverted_index":{"Continuous":[0],"Integration":[1],"(CI)":[2],"is":[3,41],"a":[4,52,117],"well-established":[5],"practice":[6],"in":[7,14,38,79,139,170],"traditional":[8],"software":[9],"development,":[10,31],"but":[11],"its":[12],"nuances":[13],"the":[15,26,135,163],"domain":[16],"of":[17,29,55,120],"Machine":[18],"Learning":[19],"(ML)":[20],"projects":[21,58,92,101,115,169],"remain":[22],"relatively":[23],"unexplored.":[24],"Given":[25],"distinctive":[27],"nature":[28],"ML":[30,62,83,91,100,114,141,168],"understanding":[32],"how":[33],"CI":[34,80,138,148,153,156,172],"practices":[35,173],"are":[36],"adopted":[37],"this":[39,48],"context":[40],"crucial":[42],"for":[43],"tailoring":[44],"effective":[45],"approaches.":[46],"In":[47],"study,":[49],"we":[50],"conduct":[51],"comprehensive":[53],"analysis":[54,133],"185":[56],"open-source":[57],"on":[59,162],"GitHub":[60],"(93":[61],"and":[63,72,84,98,112,142,151,155],"92":[64],"non-ML":[65,85,108,128,143],"projects).":[66],"Our":[67,87],"investigation":[68],"comprises":[69],"both":[70,140],"quantitative":[71],"qualitative":[73,132],"dimensions,":[74],"aiming":[75],"to":[76,107,126],"uncover":[77],"differences":[78],"adoption":[81],"between":[82],"projects.":[86,109],"findings":[88],"indicate":[89],"that":[90],"often":[93],"require":[94],"longer":[95],"build":[96,122],"durations,":[97],"medium-sized":[99,113],"exhibit":[102],"lower":[103],"test":[104],"coverage":[105],"compared":[106,125],"Moreover,":[110],"small":[111],"show":[116],"higher":[118],"prevalence":[119],"increasing":[121],"duration":[123],"trends":[124],"their":[127],"counterparts.":[129],"Additionally,":[130],"our":[131],"illuminates":[134],"discussions":[136],"around":[137],"projects,":[144],"encompassing":[145],"themes":[146],"like":[147],"Build":[149],"Execution":[150],"Status,":[152],"Testing,":[154],"Infrastructure.":[157],"These":[158],"insights":[159],"shed":[160],"light":[161],"unique":[164],"challenges":[165],"faced":[166],"by":[167],"adopting":[171],"effectively.":[174]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4392873917","counts_by_year":[],"updated_date":"2025-04-24T09:12:24.096633","created_date":"2024-03-16"}