{"id":"https://openalex.org/W4392822168","doi":"https://doi.org/10.48550/arxiv.2403.08042","title":"CT evaluation of 2D and 3D holistic deep learning methods for the\n volumetric segmentation of airway lesions","display_name":"CT evaluation of 2D and 3D holistic deep learning methods for the\n volumetric segmentation of airway lesions","publication_year":2024,"publication_date":"2024-03-12","ids":{"openalex":"https://openalex.org/W4392822168","doi":"https://doi.org/10.48550/arxiv.2403.08042"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2403.08042","pdf_url":"http://arxiv.org/pdf/2403.08042","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2403.08042","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5075034762","display_name":"Amel Imene Hadj Bouzid","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Bouzid, Amel Imene Hadj","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5067480829","display_name":"Baudouin Denis de Senneville","orcid":"https://orcid.org/0000-0001-5284-8474"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"de Senneville, Baudouin Denis","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5102713684","display_name":"Fabien Baldacci","orcid":"https://orcid.org/0000-0003-4888-4880"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Baldacci, Fabien","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5106085763","display_name":"Pascal Desbarats","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Desbarats, Pascal","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5090646749","display_name":"Patrick Berger","orcid":"https://orcid.org/0000-0003-4702-0343"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Berger, Patrick","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5050312315","display_name":"Ilyes Benlala","orcid":"https://orcid.org/0000-0002-5953-9882"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Benlala, Ilyes","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5074435025","display_name":"Ga\u00ebl Dournes","orcid":"https://orcid.org/0000-0002-0251-6639"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Dournes, Ga\u00ebl","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.909945,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":78,"max":88},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12422","display_name":"Radiomics and Machine Learning in Medical Imaging","score":0.9988,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},"topics":[{"id":"https://openalex.org/T12422","display_name":"Radiomics and Machine Learning in Medical Imaging","score":0.9988,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T10202","display_name":"Lung Cancer Diagnosis and Treatment","score":0.9885,"subfield":{"id":"https://openalex.org/subfields/2740","display_name":"Pulmonary and Respiratory Medicine"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T10522","display_name":"Medical Imaging Techniques and Applications","score":0.979,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C105922876","wikidata":"https://www.wikidata.org/wiki/Q1423981","display_name":"Airway","level":2,"score":0.6403425},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.602259},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.4948632},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.3986275},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.3969979},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.36770964},{"id":"https://openalex.org/C15744967","wikidata":"https://www.wikidata.org/wiki/Q9418","display_name":"Psychology","level":0,"score":0.3521374},{"id":"https://openalex.org/C141071460","wikidata":"https://www.wikidata.org/wiki/Q40821","display_name":"Surgery","level":1,"score":0.1452736}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2403.08042","pdf_url":"http://arxiv.org/pdf/2403.08042","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2403.08042","pdf_url":"http://arxiv.org/pdf/2403.08042","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4360585206","https://openalex.org/W4323565446","https://openalex.org/W4321369474","https://openalex.org/W4285208911","https://openalex.org/W4213079790","https://openalex.org/W3215138031","https://openalex.org/W3082895349","https://openalex.org/W3009238340","https://openalex.org/W2731899572","https://openalex.org/W2248239756"],"abstract_inverted_index":{"This":[0],"research":[1],"embarked":[2],"on":[3,24],"a":[4,73],"comparative":[5],"exploration":[6],"of":[7,12,111,126],"the":[8,47,53,69,91,109,112,127],"holistic":[9],"segmentation":[10,79],"capabilities":[11],"Convolutional":[13],"Neural":[14],"Networks":[15],"(CNNs)":[16],"in":[17,58],"both":[18],"2D":[19,48,70],"and":[20,49,65,82,130],"3D":[21,50,54,92],"formats,":[22],"focusing":[23],"cystic":[25],"fibrosis":[26],"(CF)":[27],"lesions.":[28],"The":[29,95],"study":[30,116],"utilized":[31],"data":[32],"from":[33],"two":[34],"CF":[35,41],"reference":[36],"centers,":[37],"covering":[38],"five":[39],"major":[40],"structural":[42],"changes.":[43],"Initially,":[44],"it":[45,121],"compared":[46],"models,":[51],"highlighting":[52],"model's":[55,71,93],"superior":[56],"capability":[57],"capturing":[59],"complex":[60],"features":[61],"like":[62],"mucus":[63],"plugs":[64],"consolidations.":[66],"To":[67],"improve":[68],"performance,":[72],"loss":[74],"adapted":[75],"to":[76],"fine":[77],"structures":[78],"was":[80],"implemented":[81],"evaluated,":[83],"significantly":[84],"enhancing":[85],"its":[86],"accuracy,":[87],"though":[88],"not":[89],"surpassing":[90],"performance.":[94],"models":[96],"underwent":[97],"further":[98],"validation":[99],"through":[100],"external":[101],"evaluation":[102],"against":[103],"pulmonary":[104],"function":[105],"tests":[106],"(PFTs),":[107],"confirming":[108],"robustness":[110],"findings.":[113],"Moreover,":[114],"this":[115],"went":[117],"beyond":[118],"comparing":[119],"metrics;":[120],"also":[122],"included":[123],"comprehensive":[124],"assessments":[125],"models'":[128],"interpretability":[129],"reliability,":[131],"providing":[132],"valuable":[133],"insights":[134],"for":[135],"their":[136],"clinical":[137],"application.":[138]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4392822168","counts_by_year":[{"year":2024,"cited_by_count":1}],"updated_date":"2025-04-13T08:30:22.315463","created_date":"2024-03-15"}