{"id":"https://openalex.org/W4392735863","doi":"https://doi.org/10.48550/arxiv.2403.06403","title":"PointSeg: A Training-Free Paradigm for 3D Scene Segmentation via\n Foundation Models","display_name":"PointSeg: A Training-Free Paradigm for 3D Scene Segmentation via\n Foundation Models","publication_year":2024,"publication_date":"2024-03-10","ids":{"openalex":"https://openalex.org/W4392735863","doi":"https://doi.org/10.48550/arxiv.2403.06403"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2403.06403","pdf_url":"http://arxiv.org/pdf/2403.06403","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2403.06403","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5010996897","display_name":"Qingdong He","orcid":"https://orcid.org/0000-0003-3203-0071"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"He, Qingdong","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101873531","display_name":"Jinlong Peng","orcid":"https://orcid.org/0009-0003-1887-6406"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Peng, Jinlong","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101637347","display_name":"Zhengkai Jiang","orcid":"https://orcid.org/0000-0003-4064-994X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Jiang, Zhengkai","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101735199","display_name":"Xiaobin Hu","orcid":"https://orcid.org/0000-0002-5764-3096"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Hu, Xiaobin","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5021861529","display_name":"Jiangning Zhang","orcid":"https://orcid.org/0000-0001-8891-6766"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhang, Jiangning","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5039200446","display_name":"Qiang Nie","orcid":"https://orcid.org/0000-0002-2778-4058"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Nie, Qiang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5028731909","display_name":"Yabiao Wang","orcid":"https://orcid.org/0000-0002-6592-8411"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wang, Yabiao","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5023834700","display_name":"Chengjie Wang","orcid":"https://orcid.org/0000-0003-4216-8090"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wang, Chengjie","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":78},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10719","display_name":"3D Shape Modeling and Analysis","score":0.998,"subfield":{"id":"https://openalex.org/subfields/2206","display_name":"Computational Mechanics"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10719","display_name":"3D Shape Modeling and Analysis","score":0.998,"subfield":{"id":"https://openalex.org/subfields/2206","display_name":"Computational Mechanics"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10191","display_name":"Robotics and Sensor-Based Localization","score":0.9951,"subfield":{"id":"https://openalex.org/subfields/2202","display_name":"Aerospace Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11211","display_name":"3D Surveying and Cultural Heritage","score":0.9915,"subfield":{"id":"https://openalex.org/subfields/1907","display_name":"Geology"},"field":{"id":"https://openalex.org/fields/19","display_name":"Earth and Planetary Sciences"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/foundation","display_name":"Foundation (evidence)","score":0.8683629}],"concepts":[{"id":"https://openalex.org/C2780966255","wikidata":"https://www.wikidata.org/wiki/Q5474306","display_name":"Foundation (evidence)","level":2,"score":0.8683629},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.66077185},{"id":"https://openalex.org/C2777211547","wikidata":"https://www.wikidata.org/wiki/Q17141490","display_name":"Training (meteorology)","level":2,"score":0.65564007},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.49186468},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.47178742},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.39967},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.1963},{"id":"https://openalex.org/C166957645","wikidata":"https://www.wikidata.org/wiki/Q23498","display_name":"Archaeology","level":1,"score":0.06415248},{"id":"https://openalex.org/C153294291","wikidata":"https://www.wikidata.org/wiki/Q25261","display_name":"Meteorology","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2403.06403","pdf_url":"http://arxiv.org/pdf/2403.06403","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2403.06403","pdf_url":"http://arxiv.org/pdf/2403.06403","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W3116076068","https://openalex.org/W2951359407","https://openalex.org/W2775347418","https://openalex.org/W2772917594","https://openalex.org/W2755342338","https://openalex.org/W2229312674","https://openalex.org/W2166024367","https://openalex.org/W2079911747","https://openalex.org/W2058170566","https://openalex.org/W1969923398"],"abstract_inverted_index":{"Recent":[0],"success":[1],"of":[2,178],"vision":[3,60,127],"foundation":[4,23,38,61,128],"models":[5,39,62,186],"have":[6],"shown":[7],"promising":[8],"performance":[9,147],"for":[10,109],"the":[11,28,98,105,119,139,159,190],"2D":[12],"perception":[13,67],"tasks.":[14,68],"However,":[15],"it":[16,32],"is":[17],"difficult":[18],"to":[19,27,43,63,81,96,137],"train":[20],"a":[21,53,91,133],"3D":[22,44,65,74,79,99],"network":[24],"directly":[25],"due":[26],"limited":[29],"dataset":[30],"and":[31,112,166,172,187],"remains":[33],"under":[34],"explored":[35],"whether":[36],"existing":[37],"can":[40,70,181],"be":[41],"lifted":[42],"space":[45],"seamlessly.":[46],"In":[47],"this":[48],"paper,":[49],"we":[50,89,117,131],"present":[51],"PointSeg,":[52],"novel":[54],"training-free":[55],"paradigm":[56],"that":[57],"leverages":[58],"off-the-shelf":[59],"address":[64],"scene":[66,75],"PointSeg":[69,143,180],"segment":[71],"anything":[72],"in":[73],"by":[76,163],"acquiring":[77],"accurate":[78,110],"prompts":[80,93,101,114],"align":[82],"their":[83],"corresponding":[84],"pixels":[85],"across":[86,148],"frames.":[87],"Concretely,":[88],"design":[90,132],"two-branch":[92],"learning":[94],"structure":[95],"construct":[97],"point-box":[100],"pairs,":[102],"combining":[103],"with":[104,125,183],"bidirectional":[106],"matching":[107],"strategy":[108],"point":[111],"proposal":[113],"generation.":[115],"Then,":[116],"perform":[118],"iterative":[120],"post-refinement":[121],"adaptively":[122],"when":[123],"cooperated":[124],"different":[126],"models.":[129],"Moreover,":[130],"affinity-aware":[134],"merging":[135],"algorithm":[136],"improve":[138],"final":[140],"ensemble":[141],"masks.":[142],"demonstrates":[144],"impressive":[145],"segmentation":[146,185],"various":[149,184],"datasets,":[150,174],"all":[151],"without":[152],"training.":[153],"Specifically,":[154],"our":[155],"approach":[156],"significantly":[157],"surpasses":[158,189],"state-of-the-art":[160],"specialist":[161],"model":[162],"13.4$\\%$,":[164],"11.3$\\%$,":[165],"12$\\%$":[167],"mAP":[168],"on":[169],"ScanNet,":[170],"ScanNet++,":[171],"KITTI-360":[173],"respectively.":[175],"On":[176],"top":[177],"that,":[179],"incorporate":[182],"even":[188],"supervised":[191],"methods.":[192]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4392735863","counts_by_year":[],"updated_date":"2025-04-04T10:13:08.399010","created_date":"2024-03-13"}