{"id":"https://openalex.org/W4392271386","doi":"https://doi.org/10.48550/arxiv.2402.17574","title":"Agent-Pro: Learning to Evolve via Policy-Level Reflection and\n Optimization","display_name":"Agent-Pro: Learning to Evolve via Policy-Level Reflection and\n Optimization","publication_year":2024,"publication_date":"2024-02-27","ids":{"openalex":"https://openalex.org/W4392271386","doi":"https://doi.org/10.48550/arxiv.2402.17574"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2402.17574","pdf_url":"http://arxiv.org/pdf/2402.17574","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2402.17574","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100457807","display_name":"Wenqi Zhang","orcid":"https://orcid.org/0000-0002-8312-0184"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhang, Wenqi","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5021254405","display_name":"Ke Tang","orcid":"https://orcid.org/0000-0002-6236-2002"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Tang, Ke","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100837983","display_name":"Hai Wu","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wu, Hai","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5104250657","display_name":"Mengna Wang","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wang, Mengna","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5004615610","display_name":"Yongliang Shen","orcid":"https://orcid.org/0000-0003-0975-3554"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Shen, Yongliang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101963058","display_name":"Guiyang Hou","orcid":"https://orcid.org/0009-0009-9163-0633"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Hou, Guiyang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5060694956","display_name":"Zeqi Tan","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Tan, Zeqi","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100432752","display_name":"Peng Li","orcid":"https://orcid.org/0000-0002-9428-6374"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Li, Peng","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5008666077","display_name":"Yueting Zhuang","orcid":"https://orcid.org/0000-0001-9017-2508"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhuang, Yueting","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5026310569","display_name":"Weiming L\u00fc","orcid":"https://orcid.org/0000-0003-1561-2467"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Lu, Weiming","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":78},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11810","display_name":"Complex Systems and Decision Making","score":0.6854,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},"topics":[{"id":"https://openalex.org/T11810","display_name":"Complex Systems and Decision Making","score":0.6854,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/reflection","display_name":"Reflection","score":0.60508597},{"id":"https://openalex.org/keywords/policy-learning","display_name":"Policy learning","score":0.4567361}],"concepts":[{"id":"https://openalex.org/C65682993","wikidata":"https://www.wikidata.org/wiki/Q1056451","display_name":"Reflection (computer programming)","level":2,"score":0.60508597},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.51571995},{"id":"https://openalex.org/C2779436431","wikidata":"https://www.wikidata.org/wiki/Q30672407","display_name":"Policy learning","level":2,"score":0.4567361},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.42103684},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.29425204},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.08894375}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2402.17574","pdf_url":"http://arxiv.org/pdf/2402.17574","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2402.17574","pdf_url":"http://arxiv.org/pdf/2402.17574","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4391913857","https://openalex.org/W2748952813","https://openalex.org/W2530322880","https://openalex.org/W2478288626","https://openalex.org/W2390279801","https://openalex.org/W2382290278","https://openalex.org/W2376932109","https://openalex.org/W2358668433","https://openalex.org/W2350741829","https://openalex.org/W2001405890"],"abstract_inverted_index":{"Large":[0],"Language":[1],"Models":[2],"exhibit":[3],"robust":[4],"problem-solving":[5],"capabilities":[6],"for":[7,101,120,130],"diverse":[8],"tasks.":[9],"However,":[10],"most":[11],"LLM-based":[12,68,172],"agents":[13,26],"are":[14],"designed":[15],"as":[16],"specific":[17],"task":[18,35,43],"solvers":[19,36],"with":[20,70],"sophisticated":[21],"prompt":[22],"engineering,":[23],"rather":[24],"than":[25,105],"capable":[27],"of":[28,62,80],"learning":[29],"and":[30,45,73,85,98,114,146,152,161,165],"evolving":[31],"through":[32],"interactions.":[33],"These":[34],"necessitate":[37],"manually":[38],"crafted":[39],"prompts":[40],"to":[41,51],"inform":[42],"rules":[44],"regulate":[46],"LLM":[47,151],"behaviors,":[48],"inherently":[49],"incapacitating":[50],"address":[52],"complex":[53,164],"dynamic":[54,95,166],"scenarios":[55],"e.g.,":[56],"large":[57],"interactive":[58,83],"games.":[59],"In":[60],"light":[61],"this,":[63],"we":[64],"propose":[65],"Agent-Pro:":[66],"an":[67],"Agent":[69],"Policy-level":[71],"Reflection":[72],"Optimization":[74],"that":[75],"can":[76,159],"learn":[77,160],"a":[78,94,121,125],"wealth":[79],"expertise":[81],"from":[82],"experiences":[84],"progressively":[86],"elevate":[87],"its":[88,117],"behavioral":[89],"policy.":[90,123],"Specifically,":[91],"it":[92],"involves":[93],"belief":[96],"generation":[97],"reflection":[99],"process":[100],"policy":[102,131,137],"evolution.":[103],"Rather":[104],"action-level":[106],"reflection,":[107],"Agent-Pro":[108,139,158],"iteratively":[109],"reflects":[110],"on":[111],"past":[112],"trajectories":[113],"beliefs,":[115],"fine-tuning":[116],"irrational":[118],"beliefs":[119],"better":[122],"Moreover,":[124],"depth-first":[126],"search":[127],"is":[128,140],"employed":[129],"optimization,":[132],"ensuring":[133],"continual":[134],"enhancement":[135],"in":[136,163],"payoffs.":[138],"evaluated":[141],"across":[142],"two":[143],"games:":[144],"Blackjack":[145],"Texas":[147],"Hold'em,":[148],"outperforming":[149],"vanilla":[150],"specialized":[153],"models.":[154],"Our":[155],"results":[156],"show":[157],"evolve":[162],"scenes,":[167],"which":[168],"also":[169],"benefits":[170],"numerous":[171],"applications.":[173]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4392271386","counts_by_year":[],"updated_date":"2025-04-04T10:12:08.982803","created_date":"2024-03-05"}